

DG3000 / DG4000 系列 . TD3000 系列 资料产生器 使用手册

Publish: 2024/12

1

目录

第一章	安装与设置	4
	硬件安装	4
	主机外观与功能说明	4
	DG4000 系列	5
	DG3000 系列	7
	TD3000 系列	9
	软件安装	9
	SDK	9
	规格表	9
	DG4000 系列规格表	9
	DG3000 系列规格表	12
	TD3000 系列规格表	14
第二章	功能列表与操作	16
	Utility	21
		22
	General	28
第三章	技术支援	35
附录一	Tip 定义及尺寸规格	36
	DG4000 系列	
	DG4K-pod 排线	
	EV4K-pod 排线	
	OE4K-pod 排线	
	LVDS-pod 排线	
	DG3000 系列	
	DG-pod 排线	

	Event-pod 排线	
	OE-pod 排线	
	排线 Tip 尺寸	
43	透过文字编辑器编写文字向量档(dgv)	附录二

第一章 安装与设置

硬件安装

- ❶插槽(Socket A)
- ❷插槽(Socket B)
- ❸指示灯,有2种用途
 - a. 绿灯:只有电源与 USB 传输线都正确接好上电之后,指示灯才会亮起
 - b. 红灯: 设备正于忙碌中时显示红灯长亮或闪烁

- ●DC 12V 电源插孔
- **2**USB 3.0 Type B 传输线插孔,连接电脑用.
- ❸触发输入(Trigger In)插孔
- ❹触发输出(Trigger Out)插孔
- ⑤同步参考时脉输入(Reference clock)插孔
- ❺同步参考时脉输出(Reference clock)插孔

排线安装方式

推入:将排线持平正对主机插槽,用力平均的将排线推入,听到喀嚓声即安装完成。 退出:以两指分别按下插槽内两个连杆,同时用力一压,即可退出排线。

注记:为了后续方便描述 DG 排线的用途,我们需要先订定一些名词,这些名词只会在本手册中使用。

由于大多的 DG 排线都有两组 tip,每个 tip 有 8 个输出通道。因此我们定义了以下名词 以便明确我们在后续的内容中指的是哪一组 tip。

1. 接头组 1: 通道 0 到通道 15

2. 接头组 2: 通道 16 到通道 31

DG4000系列

DG4K-pod 排线

支援型号

DG3000 系列	DG4000 系列
•	•

DG4K-pod 排线可使用于任何插槽,有4个DG4K-tip,每个tip都俱备8个信号输出通道。

用途: DG4K-pod 排线能够输出方波,可以用来模拟数字信号。

EV4K-pod 排线

支援型号

DG3000 系列	DG4000 系列
•	•

EV4K-pod 排线可使用于任何插槽,有4个tip,2个为DG4K-tip;另2组为EV4K-Tip。 用途:DG4K-pod 排线的用途已经在上文提过。EV4K-pod 排线可以接收外界送进来的 信号,作为DG 向外送出信号的依据。依照我们的设计,只要送进来的信号为'high',

DG 便会被触发并送出方波。

OE4K-pod 排线

支援型号

DG3000 系列	DG4000 系列
•	•

OE4K-pod 排线可使用于任何插槽。有 2 个 tip,皆为可设置高阻抗状态(Hi-Z)的 8 个 信号 OE4K-tip。

用途: 在一般的 DG/DG4K-POD 排线中,使用者只能够一次将接头组 1 或接头组 2 中的所有通道设置为 Hi-Z。而使用 OE4K-POD 排线,使用者可以分别将通道设置为 Hi-Z。

LVDS-pod 排线(选配)

支援型号

DG3000 系列	DG4000 系列
	•

LVDS 排线可使用于任何插槽,有两个 LVDS-tip,每个具备 8 个信号输出通道。

用途: LVDS-pod 排线与 DG/DG4K-pod 排线功能相似,两者都可以输出方波。但 LVDS

输出的是差动信号,可以应付 LVDS 的应用。

DG3000 系列

DG-pod 排线

支援型号:

DG3000 系列	DG4000 系列
•	•

DG-pod 排线可使用于任何插槽,有4个DG-tip,每个俱备8个信号输出通道。

用途: DG-pod 排线能够输出方波,可以用来模拟数字信号。

Even-pod 排线

支援型号:

DG3K	DG4K
•	•

Event-pod 可使用于任何插槽,有4个tip,2个为DG-tip;另2个为Event-Tip。 用途:DG-pod 排线的用途在上文提过。Event-pod 排线可以接收外界送进来的信号,

作为 DG 向外送出信号的依据。依照我们的设计,只要送进来的信号为'high', DG 便会 被触发并送出方波。

OE-pod 排线

支援型号:

DG3K	DG4K
•	•

OE-pod 可使用于任何插槽,有3个接头,2个为DG-tip;另一个为可设置高阻抗状态 (Hi-Z)的8个OE-tip。

用途: 在一般的 DG/DG4K-pod 排线中,使用者只能够一次将接头组 1 或接头组 2 中的 所有通道设置为 Hi-Z。而使用 OE-pod 排线,使用者可以分别将通道设置为 Hi-Z。

TD3000 系列

18.5cm 排线

※ 仅于 TD3000 系列提供

简介: TD3000 排线提供 16 个输出通道, 1 个时脉输出通道 CKO; 1 个时脉输入通道 CKI 以及 3 个事件(Event)输入通道(Ev0~2)。

	1 1									1	Г							<u> </u>					,
	0	1	2	3	4	5	6	7	ско	8	9	10	11	12	13	14	15	NC	Ev1	скі	\square	Щ	
ШШ	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Ev0	Ev2		Щ	
																						Ē	

软件安装

请注意:自 2024 年起,我们将不提供 x86(32 位元)版本的软件,仅提供 x64(64 位元)版本软件。若有 x86 软件的需求,请与我们联系。

请至皇晶科技官网-下载-安装程序,选**[** *教字波形产生 器*] Data Generator / TravelData 下载安装。安装结束后,桌面上与程序集中将 会出现 Data Generator 的启动图标,可

以任选一个来启动 TD3000 系列/DG3000 系列/DG4000 系列()。

SDK

我们提供 SDK 供用户控制 DG 软件。请参考 DG_installPack/DG/SDK 或

DG_installPack/DG/Protocol SDK 中的范例代码;或通过电子邮件与我们联系。

规格表

DG4000 系列规格表

型号		DG4064B	DG4096B	DG4128B				
电源		电源	12V Power Adapter					
		静态消耗功率	9W	12W	18W			
		瞬间最大消耗功	24W	30W	36W			
		率						
硬件传输介面			USB 3.0					
插槽/排线(一对	可用插槽数	量	2	3	4			

一)	资料输出通	道数	48	80	112 ^{*2}				
	标配排线数		1/1/1/0	2/1/1/0	3/1/1/0				
	DG4K/OE4	K/EV4K/LVDS ^{*1}							
	可用通道	DG4K pod	32ch@300Mbps,						
	数 @ 最		16ch@600Mbps, 8ch@1.2Gbps,						
	高工作频		4ch@2.4G	bps					
	率	LVDS pod	16ch@300	Mbps,					
			16ch@600	Mbps, 8ch@	01.2Gbps,				
			4ch@2.4G	bps					
		OE4K/EV4K pod	16ch@300	Mbps, 8ch@)600Mbps,				
			4ch@1.2G	bps, 2ch@2	.4Gbps				
DG4K-tip(输出通	最大资料输	出速度	700Mbps (350MHz)						
道,用于	不同工作频	率之下最小输出	0.9Vpp @ <= 40Mbps, 1.2Vpp @						
DG4K/EV4K-pod)	电压		<= 400Mbps, 1.5Vpp @ <=						
			500Mbps, 3.3Vpp @ <= 700Mbps						
	输出电压范	事	0.9Vpp ~ 5.0Vpp						
	上升时间		300ps @ 3.3V						
	输出阻抗		CMOS with 20Ω						
	输出能力		20mA/ch						
OE4K-tip(输出通	最大资料输	出速度	700Mbps (350MHz)						
道,用于	不同工作频	率之下最小输出	0.9Vpp @ <= 40Mbps, 1.2Vpp @						
OE4K-pod)	电压		<= 400Mbp	os, 1.5Vpp @	ᢧ <=				
			500Mbps, 3	3.3Vpp @ <	= 700Mbps				
	输出电压范	事	0.9Vpp ~ 5.0Vpp						
	上升时间		300ps @ 3.3V						
	输出阻抗		CMOS with 20Ω						
	输出能力		20mA/ch						
LVDS-tip(输出通	最大资料输	出速度	1.2Gbps (600MHz)						
道,用于 LVDS-pod)	输出电压		±350mV ^{*5}						
EV4K-tip(输出通	通道数 (LA	/Clk In)	16 / 1						

道,用于	最大输入速率	200MHz					
EV4K-pod) ^{*3}	触发电压	-0.5V ~ 4.5V @ 0.1V Resolution					
	非破坏最大耐压	±15V DC + AC peak(Max.)					
	输入阻抗	1MΩ 5pF					
	触发灵敏度	~300mV					
内部工作频率	范围	1Hz ~ 2.4GHz ^{*4} (Periodd: 1s ~					
		416ps)					
	准确度	6 digits, Min. 1Hz					
外部工作频率	范围	<= 200MHz					
每通道记忆深度		256Mb					
相位延迟时间		Depend on Internal Clock, Min.					
		416ps					
工作温度/保存温度		5℃~45℃ (41°F~113°F) / -10℃					
		~65° C (14°F~149°F)					
事件触发	软件	Hot Key					
	硬件(通道数/模式/触发准位)	16 / Logic AND OR / -0.5V ~ 4.5V					
软件功能	语言	English / 繁体中文 / 简体中文					
	波形档案储存格式	DGW / DGV / VCD / CSV					
	通用波形产生	Sync. Counter, Asnyc. Counter,					
		I2C, MIPI I3C, REFE, PMBus,					
		PWM, SPI					
	资料控制指令	Loop / Jump / Hold / Wait For					
		Event					
配件(探针夹/Flying	Lead Cable)	80 / 10 120 / 14 160 / 18					
主机尺寸		(L)270mm x (W)175mm x					
		(H)55mm					
主机/配件重量 800g / 1850g							

¹DG: 单端; OE: 输出启用; EV: 事件; LVDS: 低电压差分信号

² 插槽 D 只有一半通道可用

³一半 EV pod 的通道 (EV4K-tip) 是输入,另一半通道 (DG-4K-tip) 是 DG 输出

4 最大6 位数数值调整

⁵DUT (代测物) 输入端必须使用 100Ω 端接电阻。

DG3000 系列规格表

型号			DG3064B	DG3096B	DG3128B						
	电源			12V Power adapte	er						
电源	静态	肖耗功率	9W	12W	18W						
	瞬间;	最大消耗功率	24W	30W	36W						
硬件传输介面	Ĩ			USB 3.0							
资料输出通道	道数		48	80	112						
	总记	乙体大小		32Gb							
14	每通道记忆深度										
资料输出速度				400Mbps (Max.)							
	山立	范围		1Hz ~ 400MHz							
工佐垢支	이미(지	准确度	6 位数								
工作则单	山立	范围		<200MHz							
	クロコン	通道数		1 Channel (TTL3.3	V)						
资料控制指令	>		Loop,	Jump, Hold, Wait f	or Event						
체카	时钟通	道	< 200ps								
174)	资料通	道		< 200ps							
	软件			Hot Key							
重件舳岩		通道数	16								
ず什麼及	硬件	模式	Logic AND / Logic OR								
		触发准位		-0.5V ~ 4.5V							
相位延迟功	通道数			所有通道皆可设置	∃ 1.						
能	延迟时	间	> 300Mbps : N	lo, < 300Mbps : 8 F 1UI	Phases from 0 to						
温度	工作温	度/储存温度	5°C∼45°C (41 °F	` ~113 °F) / -10°C ~6	5°C (14°F∼149°F)						
	语言		English / Tradi	tional Chinese / Si	mplified Chinese						
	波形储	存/载入		Yes							
软件功能	通用波	形产生	Synchronous I3C, MIP	Synchronous / Asynchronous Counter, I2C, MIPI I3C, MIPI RFFE, PMBus, SPI/SIPI							
	波形编	辑介面	ۍ ۲	皮形绘制/文字描述》	皮形						
装置尺寸	LxW	x H (mm³)	270 x 175 x 55								
重量	装置 /	配件		800g / 1850g							
排线	DG-po / OE-p	d / Event-pod od	1 / 1 / 1	2/1/1	3/1/1						

	Flying lea DG (DG) / Event) /OE	d cable: Event (DG, E (DG, OE)	4 / 2, 2 / 2, 1	8 / 2, 2 / 2, 1	12 / 2, 2 / 2, 1						
	探针		80	120	160						
	通道数		32 for DG / 24 for OE								
	输出速率			400Mbps (Max.)							
	低准位电	玉值		0V							
DG-pod 排 线/ OE-pod 排线	DG-pod 排 电压最小/	非线高准位 值	0.8Vpp @ <= 1	= 50Mbps, 1.2Vpp (I.5Vpp @ <= 400M	@ <= 300Mbps, bps						
	OE-pod 打 电压最小/	非线高准位 值	1.1Vpp @ <= 1	= 50Mbps, 1.3Vpp (I.5Vpp @ <= 400M	@ <= 300Mbps, bps						
	高准位电	玉最大值	5.0V								
	输出的最小	、脉冲宽度	2.5 ns								
	输出阻抗		Т	TL series with 20 O	hms						
	输出能力			20mA/ch							
	允许输出	DG-pod 排线	2 个总线序列 OE ¹								
	Enable)	OE-pod 排线	1 个总线序列 OE ¹ + 8 个通道 OE ²								
	通道数		16 (DG) + 16 (Event)								
	输出速率			200MHz (Max.)							
	事件触发	作位	-1\	/~8V @ 0.1V Reso	lution						
Event-pod	非破坏性	输入范围	±1	5V DC+AC peak (N	Max.)						
 排线	可触发事 [。] 冲	件的最小脉	2.5 ns								
	触发灵敏	度		~300mV							
	输入阻抗			1M 5p							

1总线序列 OE: 可控制一组总线序列的输出, 每个总线序列宽度为 16 通道

²通道 OE: 可控制单一通道

TD3000 系列规格表

型号			TD3008E	TD3 ²	03116B TD3216B					
	电源			USB	3.0					
电源	静态》	肖耗功率		2.5	5W					
	瞬间量	最大消耗功率		4.5	5W					
硬件传输介面	面		USB 3.0							
资料输出通过	首数		8		1	6				
	总记忆	Z体大小	4Mb	161	Mb	4Gb				
161614	每通过	道记忆深度	512Kb/ch	1Mb	o/ch	256Mb/ch				
资料输出速度	度	-	100Mbps (Max.)		200Mbp	s (Max.)				
	山 动7	范围	1Hz ~ 100MHz		1Hz ~ 2	200MHz				
工作场家	어피난	准确度		6 位	立数					
工计频学	41.立7	范围	<100MHz		<200	MHz				
	에티기인	通道数	1	Channel	(TTL3.3\	/)				
资料控制指令	Ŷ		Loop, J	ump, Hol	d, Wait fo	r Event				
치카	时钟道	通道	< 200ps							
5441	资料道	通道	< 200ps							
温度	工作溢	温度/储存温度	5°C~45°C (41°F~	1°F~113°F) / -10°C~65°C (14°F~149°F)						
	语言		English / Traditional Chinese / Simplified Chinese							
	波形偷	诸存/载入	Yes							
软件功能	通用》	皮形产生	Synchronous / Asynchronous Counter, I ² C, MIPI I3C, MIPI RFFE, PMBus, PWM, SPI,							
	波形纲	扁辑介面	波	形绘制/文	字描述波	波形				
装置尺寸	LxW	′ x H (mm³)		123 x 7	76 x 21					
重量				68	0g					
18.5cm 排线 / Event / GND /	ີ້ (Data / N.C.)	CLK-IN / CLK-OUT	A 40-pin lea	ad cable (16 / 1 / 1	/ 3 / 18 / 1)				
探针			20		4	0				
	通道数	汝	8 with OE		16 wi	th OE				
	输出过	東率	100Mbps (Max.)		200Mbp	s (Max.)				
	Group	0	1 (ch0~7 & CKO)	2 (c	h0~7 & C	KO, ch8~15)				
Data Output	VoH r	min.	0.8Vpp @ <= 15 1Vpp @ <= 1	Mbps, 00Mbps	0.8Vpp @ <= 15Mbps, 1Vpp @ <= 100Mbps, 1.1Vpp @ <= 200Mbps					
	VoH r	nax.		4.5	5V					
	VoL			0	V					
	输出的	的最小脉冲宽度	10 ns		5 ns					

	输出图	且抗	CMOS with 20 Ohms						
	输出角	宦力	20mA/ch @ 50 Mbps						
	允许斩 Enable	〕出(Output e)	All channels						
	软件		Hot Key						
		通道数	3						
		工作模式	Logic AND / Logic OR						
		触发准位	-4V ~ +6V						
Event		输出速率	200MHz (Max.)						
Input		输入工作范围	-10V~10V						
	硬件	非破坏性输入 范围	±30V DC, 12Vpp AC (Non-destructive)						
		可触发事件的 最小脉冲	5 ns						
		触发灵敏度	1.5V						
		输入阻抗	200KΩ 7pF						

第二章 功能列表与操作

软件启动后会出现主选单画面。

👼 Acute Data Generator (版本:2.0.52)			– 🗆 X
🖆 💾 🎒 开檔 保存 全部保存			🛞 简体中文 💊
Utility DGW /TDW VCD Protocol TXT	H/W Configuration Operation Mode x1 Conventional format (112 Channels)	Working Freq 1x 200.00	uency 100000 T Mbps V 50.000ns
Bus Protocol I2C MIRLI3C	Select Verilog - Value Change Dump (*.VCD) File		
MIPI RFFE PMBus	Label	Channel	repeat Count
SPI/SIPI General PWM 2			
Waveform Editor			
Connected SN: DGB41280005 (DG4128	4 Adv. Setti BB - USB 3.0) (Status: Standby)	ngs][_ ∨ 輸出电压	▶ 发送 ▶ 重复 ∞ 🛟 次数
❶ 工具列			
● 开档/ Open File:	开启*.DGP 档案。		
d 储存/ Save File:	储存*.DGP 档案,可以将目	前使用的总线	序列设置存下。。
自 全部储存/ Save A	l:储存*.DGP档案,可以料	 月前所有的 <i> 尚</i>	总线序列设置存下。
一 语系:支援繁体中文	口简体中文/英文。		
设置/ Option: 设置	青软件环境参数,包含工作目	录路径/波形编	晶辑器/通道标签高度
等。			
🛛 Utility 🏮 / Protoc	col Bus /General		
€ ∎ Waveform Edit	or		

在波形编辑器开启新页面/ Open New page on Waveform Editor: 切换至波形编辑

器,可以在该页面下手动编辑波形。

1 转换目前设置至波形编辑器并将目前编辑的数据转换成单次发送波形/ Convert

current plugin settings to Waveform Editor (Single).

W转换目前设置至波形编辑器并将目前编辑的数据转换成**重复发送**波形/ Convert current plugin settings to Waveform Editor (Repetitive)。

4

Ⅲ 输出电压/ Output Level: 调整电压输出

- 6
- 1. Operation Mode: 设置 Convention format(x1, x2, x4, x8), 这项设置会影响最 后输出的频率。
- 2. Working Frequency: 设置仪器的工作频率(最高为 300Mbps)
- ※ Ex. 输出频率 = 150Mbps × x4 Convention format = 600Mbps = 300MHz

DG4000 系列: 设置 DG4K / EV4K / OE4K / LVDS / DG / EVENT / OE POD 输出/输入

电压。

电压。	
H/W Configura	on X
Operating Mode	Probe Configuration (Maximum Available Channels: 128)
	Working Frequency Multiple Factor: 1 x Available Channel Number: 96 Command Availability: Every points Group controlled Output Enable: Supported
Clock Mode	Internal Quick Setup
	DG4K-POD
Working Frequen	(1bps - 300Mbps, resolution: 6 digits) SlotA () DG 0 - 7 DG 8 - 15 輸出電歴: 3.30 V
	DG 16 - 23 DG 24 - 31 輸出電壓: 3.30 V
	1 x 200.000000 Mbps = 200Mbps = 200Mbps DG 0-7 DG 8-15 輸出電壓: 3.30 V
	interval 5ns 000 B DG 16 - 23 DG 24 - 31 輸出電歴: 3.30 V
	OE4K-POD
Device Memory -	10 M points (3.91%) Slot C ()
-	OE 8 - 15 N/A 輸出電歴: 3.30 V
	EV4K-POD
	Slot D T EV8-15 Threshold: 1.60 V
	◆ 確定 ★ 取消
	Quick Satur
Slot A 👔	■DG 0 - 7 ■DG 8 - 15 輸出電壓: 3.30 V
	■DG 16 - 23 ■DG 24 - 31 輸出電壓: 3.30 V
	DG POD
	■DG 0 - 7 ■DG 8 - 15 輸出電際: 3.30 V
	■ DG 16 - 23 ■ DG 24 - 31 輸出雷壓: 3 30 V
Slot C (OE 0 - 7 1 前出電壓: 3.30 V
	● OE 8 - 15 ● N/A 輸出電壓: 3.30 V
	EV4K-POD
Slot D 👔	■DG 0 - 7 ■DG 8 - 15 輸出電壓: 3.30 V
	EV 0 - 7 EV 8 - 15 Threshold: 1.60 V

DG3000 系列:设置 DG/EVENT/OE POD 输出/输入电压。

Operating Mode :

Operating Mode	
	Timestamped format (96 Channels)
	Timestamped format (96 Channels)
	x1 Conventional format (112 Channels)
	x2 Conventional format (56 Channels)
	x4 Conventional format (28 Channels)
	x8 Conventional format (14 Channels)

Timestamped format (96 Channels): 启用编辑重复波形功能,最大输出速率是 300 Mbps。

x1 Conventional format (112 Channels):不启用编辑重复波形功能,最大输出速率是 300 Mbps。

x2 Conventional format (56 Channels): 启用 2 倍频模式,最大输出速率是 600 Mbps。

x4 Conventional format (28 Channels): 启用 4 倍频模式, 最大输出速率是 1.2 Gbps。

x8 Conventional format (14 Channels): 启用 8 倍频模式, 最大输出速率是 2.4 Gbps。

TD3000 系列:设置 CH0~CH15/Ev0-2/CKO/CKI 输出/输入电压。

6 H/W Configuration																			×
Probe Configuration (Maximum Available Channels: 16)																			
Clock Mode	Internal 👻																		
Working Frequency (1bps - 200Mbps, resolution: 6 digits)			1 2	2		E (6 7	CKO	0	•	10	44	40	42	4.4	45 4	in Eud	CKI	
		0	1 2	3	4 3	5	0 /	CRU	0	9	10	-	12	15	14	15 A			
200.00000	Mbno - 200Mbno	GGG	G	G	G	G	GG	G	G	G	G	G	G	G	G	G	G Ev0	Ev2	ш
200.00000	interval Epo																		
	interval ons																		
		Output Chappe	No.													Quic	k Setup		
Device Memory				电雷厥	: 3 30 V	,													
10 M points (3.91%)]	Ch 8 - 15		山电座	: 3.30 V	,													
				511 45 (6	. 3.30 V											-			
		Input Channels	3 (+a																
		EV0-27CK		出电座	: 1.60 V	·													
																		確定	🗙 取消

Clock Mode: 分为 Internal / Clk-In (MCX port) / CLK (I) 或 CKI。

- Internal: 使用内部时钟输出信号。
- Clk-In (MCX port): 使用 MCX port 的 Clk-In 输入外部时钟来输出信号。

DG3000 系列/4000 系列 Clk-In (MCX port)

TD3000 系列 Clk-In (MCX port)

此规格为固定 TTL3.3V, 输入的电压须高过 2.4V (辨识为 1), DG3000 系列 /DG4000 系列/TD3000 系列才可在 External Clock 模式下正常工作, 输入频率最 大为 200 MHz。

DG4K CLK(I)

此输入电压也是可变动的,可调整的输入电压范围是-0.5V~4.5V。 TD3K CKI

<u> </u>										r							<u>-</u>			
0	1	2	3	4	5	6	7	CKO	8	9	10	11	12	13	14	15	Ain	Ev1	скі	T
G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Ev0	Ev2	ШЦ

此输入电压也是可变动的,可调整的输入电压范围是-5V~5V。

发送/Run:输出该信号一次。

✓重复/ Repeat:重复输出该信号 1~∞次。

DGW/DGV

该功能可以直接发送 DG3000 系列/DG4000 系列/TD3000 系列产品的波形档 (*.DGW/*.TDW/*.DGV),载入波形档后按下发送即可。

VCD

该功能可以直接发送 Value Change Dump (*.VCD) 档案,载入档案后按下发送即可。

I2C

👼 Acute Data Generator (版本:2.0.52)			-		×
	(3	简体	₽文₊	Option
Vilility DGW / TDW VCD Protocol TXT Protocol TXT Portocol I2C MIPI I3C MIPI RFFE PMBus SPI/SIPI Ceneral PWM	通道 ▲0 ↓ SCK ▲0 ↓ SDA ▲1 ↓ A1 ↓ Aw=12; D=10,20,30; Aw=3f; D=0; Aw=46; D=21,3a; I2C 位址模式<(Addressing/Include R/W in Address)		5	范例	清除
Output enable control conflict, HiZ control (Connected) (SN: DGB41280005 (DG412	lisabled Adv. Settings ⅢV 输出电压 Output Level DG 0 - 15 : 3.30 V(Slo 18B - USB 3.0) (Status: Standby)	otA)	🕑 发	ë 🕑	重复 »

●通道(Channel): 设置 SCK 及 SDA 信号通道。

❷I2C 位址模式(Addressing Mode): 设置 7-bit 模式/8-bit 模式(包含 R/W 到位址内)/10-bit 模式。

3I2C 速度(bit/s): 支援速度上限是 50 M bps。

④I2C 资料(Hex 16 进制):

范例:提供 I2C 数据样本。

清除:清除 I2C 所有数据。

Ⅰ2C 数据格式说明:

Aw/Ar: 表示 I2C Address Write / Address Read。

D: 表示 I2C Data,其中 I2C read data 因硬件无支援 Master-Slave 架构所以会以 Hi-Z 状态表示。每一笔数据以逗号区隔,每列以分号结束。

③ACK/NACK: 模拟 Slave 行为, 但仅在高级设置(Advance Setting)中勾选「Disable Hi-Z」时可用。

MIPI I3C

👼 Acute Data Generator	(版本:2.0.52)		– 🗆 X
∸ 💾 🎒 开檔 保存 全部保存		0	简体中文、 🔩
Utility DGW/TDW VCD	Channel 1 SCL <u>A0 :</u>	I3C Frame	6
Protocol TXT	SDA A16 😫		NextAction Sample
I2C			Frame
MIPI I3C MIPI REEE			BoardCast
PMBus			Directed
SPI/SIPI			Private
PWM			I2C Message
			Packet
			RESTART
			CCC Command
			Address
			DATA
	Speed and Timing Setup		HDR
	OD Speed 2		HDR RESTART
	400.00 🕂 KHz 🗸		HDR DATA
	PP Speed		HDR TSP
	1.00 🗧 M Hz 🗸		HDR TSL
	Timing Setup 3		HDR CRC
Wayaform E			HDR EXIT
	Enable Multiple Free		Clear All Pattern 6
		Adv. Settings 🛛 🛛 🗤 輸出电压 Output Level DG 0 - 15 : 1.80 V(Slot A) 💽 发送	▶ 重复 💿 😒 次数
Connected SN: DGB412	80005 (DG4128B - USB 3.0) Sta	tus: Standby	

❶Channel: 设置 SCL/SDA 通道

❷Speed Setup: 设置速度

❸Timing Setup: 时间参数细部设置

👼 Timing Parameters >										
I3C Timing Requirements When Communicating With I2C Legacy Devices (Unit: ns)										
tSU_STA	600.00	tHD_STA	600.00							
tLOW	1250.00	tHIGH	1250.00							
tSU_DAT	625.00	tHD_DAT	625.00							
tSU_STO	600.00]								
I3C Open Dra	in Timing Parameters (Unit: n	s)								
tLOW_OD	1250.00	tHIGH	1250.00							
tSU_OD	625.00)								
tCAS	40.00	tCBP	20.00							
I3C Push-Pull	Timing Parameters for SDR I	Mode (Unit: ns)								
tLOW	1250.00	tHIGH	1250.00							
tSCO	40.00)								
tSU_PP	625.00	tHD_PP	5.00							
tCASr	20.00	tCBSr	20.00							
				🗸 ОК	X Cancel					

④Enable Multiple Frequency: 勾选时, 启用 Multiple Frequency.

SNext Action/Sample: 添加 I3C 模板

⑥Clear All Pattern: 清除所有已添加的模板

MIPI RFFE

👼 Acute Data Generator	(版本:2.0.52)						—	
🔓 💾 🎒 开檔 保存 全部保存						8	简体中	文 🍓
Vility DGW / TDW VCD Protocol TXT	Channel 1 SCLK A0 ÷ SDATA A16 ÷	MIPI RFFE Settings COMMAND SEQUENCES Register 0 Write	3	T]			
V Bus Protocol I2C MIPI I3C MIPI RFFE PMBus		Slave Address(SA) Register Address	A 0	Auto 🗘	•			
SPI/SIPI General PWM		Lower Register Address Byte Count(BC) Data0	0 0 7	Auto 🗘 Auto 🗘 Auto 🗘				
		DATA(LSB) Register Mask Page Address	0 0 0	Auto 🗘 Auto 🌲	5 Data Data 1-15()	p)		
		MID MID1 MID0 Pa	rity Auto 🗘		SCLK Duty Cycle(%	5) Samples Non 7	•	
		Clock Count Packets Duty Cycle MIE	Duratio	n 1300	COMMAND E	Appen BC(P) ADDRES	d 🛉 Inseri	Move Up
Waveform E	Speed 2 20.00 ÷ M Hz ↓	1 50% 2 50%	A	Reg	gister 0 Write gister 0 Write	-	Dele	ove Down ete Selected
Connected SN: DGB4128	30005 (DG4128B - USB 3.0)	Adv. Settings	汕出电压 Outp	ut Level	DG 0 - 15 : 1.80 V(Slo	tA) 🕩 发送 🤇	➡ ● 重复 <u>●</u>	次数

●通道(Channel): 设置 SCLK 及 SDATA 信号通道。

2速度(Speed): 上限是 100MHz。

❸MIPI-RFFE 命令序列: 根据版本,提供

- 1. REGISTER 0 WRITE
- 2. REGISTER WRITE/READ
- 3. EXTENDED REGISTER WRITE/READ
- 4. EXTENDED REGISTER WRITE/READ LONG
- 5. INTERRUPT SUMMARY AND IDENTIFICATION
- 6. MASKED WRITE
- 7. MASTER OWNERSHIP
- 8. MASTER WRITE/READ

9. MASTER CONTEXT TRANSFER WRITE/READ

等命令,每个命令包含下方的 SLAVE/REGISTER ADDRESS/BYTE COUNT/DATA.. 等。

④PARITY: 奇偶校验位,AUTO 会自动选择正确的奇偶校验位,错误的奇偶校验位背景

颜色将会显示红色。

●数据(DATA): 当某些指令的 DATA 超过 1 Byte 时,可以使用此种方式加入 DATA。

P	ackets									
ſ	Duty Cycle	MID1/0(P)	SA(P)	COMMAND	BC(P)	ADDRESS(P)	MASK	DATA(P)	CLOCK COUNT	DURATION
L	1 50%		A	Register 0 Write				7(1)		1300 ns
b	2 50%			Register 0 Write				7(4)		1200 pc
ľ	2 50%		^	Register o write	-		-	7(1)	-	1300 115

③Bus Idle Time: 封包之间的间隔时间, 最小的时间为 5 ns, 但可输入 0 表示无 idle time。

♥附加(Append): 在列表中末端加入新数据。

8插入(Insert): 在列表中选取处的下一个加入新数据。

●上移/下移/删除(Move up/ Move Down/ Delete Selected): 上移/下移/删除列表中选取的数据。

PMBus

👼 Acute Data Generator (版本:2.0.52)		– – ×
📤 💾 🎒 開檔 儲存 全部儲存		🞯 繁體中文、 🎭 Option
V Utility DGW /TDW VCD Protocol TXT Bus Protocol I2C MIPI I3C MIPI RFFE	Channel 1 SCK A0 SDA A16 Channel 1	PMBus Settings Packet Types Group Command Protocol Packet Settings Device Count 1 Enable PEC Disable PEC Address 1 Command 1 D0 D1 D2 D3 Data Data Data Data Data Data Data
PMBus SPI/SIPI Seneral PWM		Oth V Oth V<
	4	Address 4 Command 4 00h v 00h v 00h v 00h v 00h v 00h v 5 6 Bus Idle Time 5 us v + Append + Insert
		PMBus Patterns ADDR CMD EXT./CTRL CMD/STATUS MASK BYTE Move Up V Move Down Delete Selected Topological contents Topological contents
Waveform Editor	PMBus Speed 2	×
Channel settings in Empty Slot Connected SN: DGB41280005 (DG4128B -	USB 3.0) (Status: Standby)	Adv. Settings

●通道(Channel): 设置 SCK 及 SDA 信号通道。

❷速度(PMBus Speed):设置 PMBus 速度,范围:1KHz~100MHz。

❸数据设置(PMBus Settings)Packet Types: 设置 PMBus 封包种类,每种封包拥有各自的栏位。

④ Bus Idle Time: 封包之间的间隔时间, 最小的时间为5 ns, 但可输入0表示无 idle time。

❺附加(Append): 在列表中末端加入新数据。

❻插入(Insert): 在列表中选取处的下一个加入新数据。

●上移/下移/删除(Move up/ Move Down/ Delete Selected): 上移/下移/删除列表中选取的数据。

SPI/SIPI

👼 Acute Data Generator	(版本:2.0.52)	– 🗆 X
		🞯 简体中文 💊 Option
Cutility DGW /TDW VCD Protocol TXT Protocol I2C MIPI I3C MIPI RFFE PMBus SPI/SIPI General PWM	Type 1 4 Wire-SPI ▼ 通道 2 /CS(/SSC) A0 SCK A1 SDI A2 SDO A16 Word Size (4~40) 3 8 bit(s) ↓	SPI/SIPI Data Settings 5 SPI Data (Hex, e.g. 1A 2B 3C) 1A 2B 3C 4D 5E 6F 70 80 SIPI Clock Number 12 SIPI Clock Number 16 Bus Idle Time 0 Idle Time 1 Missing 9 Sovenwrite Append Append Insert
Waveform Er	SPI/SIPI Speed 100.00 + KHz →	DATA BUS IDLE Move Up Move Down Delete Selected 3 Convert to Loop when idle time >= 10
Connected SN: DGB412	Adv. Setting 80005 (DG4128B - USB 3.0) (Status: Sta	s

●种类(Type):选择 SPI 种类,有 4 Wire-SPI, 3 Wire-SPI, 3 Wire-SPI (Unused Chip

Slave), 2 Wire-SPI (Unused Chip Slave) and SIPI.

❷通道(Channel):设置 Chip Select/SCK/SDI/SDO 信号通道。

❸字元宽度(Word Size):设置字元宽度,范围:4~40 bits。

❹速度(SPI/SIPI Speed):设置 SPI/SIPI 速度,范围:1Kbp~100Mbps。

⑤数据设置(SPI/SIPI Data Settings)

- SPI Data:手动输入 SPI 数据, 仅支援 16 进制数值。
- SIPI Clock/Data:手动输入 SIPI clock 个数以及 SIPI 数据。
- Load from file: 汇入档案,支援 bin/txt 档案格式, 汇入档案前须先选择种类(Type)。

- SDI(Write)-Latency-SDO(Read): 启用 SDI-Latency-SDO 模式,需输入的参数 有:
 - 1. Write Length:写入字元宽度。
 - 2. Read Length:读取字元宽度。
 - 3. Latency:延迟宽度。
 - 4. Frame Guard Time: 间隔时间。
- Bus Idle Time: 封包之间的间隔时间,最小的时间为 5 ns,但可输入 0 表示无 idle time。

❺附加(Append): 在列表中末端加入新数据。

●插入(Insert): 在列表中选取处的下一个加入新数据。

3上移/下移/删除(Move up/ Move Down/ Delete Selected): 上移/下移/删除列表中选取的数据。

●复写(Overwrite): 以新设置的 SPI data 复写被选择的 data。

General

PWM

👼 Acute Data Generator	(版本:2.0.52)				-	
🗀 💾 🎒 开檔 保存 全部保存				0	简体中	文 🔩 Option
Villity	Channel		PWM Patterns			
Cutility DGW /TDW VCD Protocol TXT DGW /TDW VCD Protocol I2C MIPI I3C MIPI RFFE PMBus SPI/SIPI General PWM	Channel PWM Channel Duty Duty Duty Cycle 2 50.0 % 0 1 % Duty Step (2 MHz Max. Freq.) 0 0.1 % Duty Step (200 KHz Max. Freq.)	+ Append	PWM Patterns Channel	Duty (%)	S	we Up e Down e Selected
Waveform Er	3 1.00 [★] KHz ▼		4	2		
Connected (SN: DGB412	Adv. Settings 80005 (DG4128B - USB 3.0)) (Status: Standby)	┃┃ 輸出电压	Output Level DG 0 - 15 : 3.30 V(S	lotA) 🜔 发送	▶ 重复 💌	• 次数

❶通道(Channel):设置 PWM 信号通道。

❷占空比(Duty Cycle):设置 PWM Duty Cycle。

❸速度(PWM Speed):设置 PWM 速度, 范围: 100 Hz ~ 2 MHz。

④附加(Append):在列表中末端加入新数据。

●上移/下移/删除(Move up/ Move Down/ Delete Selected): 上移/下移/删除列表中选取的数据。

Waveform Editor

Acute DG Waveform Editor (Version: 2.0.52) - [Unitilled] - - X
DG_Function NP
Repeat Repeat Count 0 CH-00 A0 0
CH-03 A3 2 0 8(65) 275ns (H-03 A3 2 0 8(65) 275ns
4 (<u>D(20)</u> 100ns
Label Channel Value Connected) [SN: DGB41280005 (DG4128B - USB 3.0)] [Standby]
●操作工具列
王 新 档 安 .
一 开新档案: 村伙形贝科主即有工, 可选择定日休田远追议重。
读取档案:读取先前保存的*.daw/*.dav/*.tdw 波形档。
〔〕 保存档案:将目前设置的波形资料保存到*.dgw/*.dgv 波形档。
▶ 波形复原
└ 波形重做
↘/ 拖曳手势: 将目刖渭ເ採作固定万拖曳榠式。
—————————————————————————————————————
/ 1 日初于另: 村日前捐献保件仪重乃日幼侯氏。
复制波形,将选择区域的波形复制到剪贴簿。
OO 剪下波形:将选择区域的波形剪下并复制到剪贴簿。
L. 账上波形:将剪贴簿的波形覆盖到选择区域。
EMD
编辑指令:开启指令编辑视窗并加入到指定位置。
▶ 删除指令: 删除选择区域的所有指令内容。

👼 Command Settings	? ×
Command:	Command Resource:0/8000
NP: No Operation	▼
	✓ 確定 × 取消

No Operation (NP):不使用指令 (预设)

Loop Count (LC):设置波形重复次数,次数范围 1~ 8,388,607。

Loop to New Address (LP): 搭配 LC 指令来设置有限次数的波形输出。

下图表示输出波形5次。

Jump to New Address (JP): 表示无条件跳跃至新位址。

下图表示无限次输出,直到按下停止输出波形。

	💾 🍤 (2 🍋 🗸	<u>"</u> [MD Repeat _	H L Hiz M 1		M 🌄	orking Freque emory: 10MB	ncy: 1Kbps	4.	»
		9									4	9
DG_Functio	•	NP								JP 1	0	
Repeat	Repeat Count	0										
CH-00	A7:A0	10		-01 02 03 04 05 06	107 10810910A 0B	0Q0D0E10F110	11 12 13 14 15	16 17 18	19 1A1B101 E	1E(1F		
							db.					
							< <u>></u>					
VÊ VÊ												~
Label	Channel	Value	•									►
Connected	SN: 21519 (DG3	3064B - USB 3.0)) (Stand	by								

Wait Event (WE):设置等待事件 (Event)发生时,接下来要执行的动作,支援 Event 0~2 / Keyboard Event / Event Invert。

Event 0~2 发生表示从 Event-tip (DG3000)通道 0~2 或是 Ev0~2 (TD3000)通道接

收到任一脉波; Keyboard Event 发生则表示从电脑键盘接收到 Space (预设)或是 Enter

键按下;	勾选 Event	Invert 表示将	Event 波形反向.
------	----------	------------	-------------

👼 Command Settings	? ×
	Command Resource:0/8000
Command:	
WE: Wait Event	•
 Event Invert Event 0 Event 1 Event 2 Event 0 or Event 1 Event 0 or Event 2 Event 1 or Event 2 Event 1 or Event 1 or Event 2 Keyboard Event 	
	✓ OK X Cancel

Hold Count (HD):设置波形重复次数,次数范围 1~ 8,388,607。

下图表示重复该波形 5 次,该波形是 5 ns 脉波,重复 5 次即为 25 ns 脉波。

	💾 🍤 🡌		9 🖑		%		epeat _	ተ ታ	HiZ	DATA XXX		»
		-	0	1		1	1		1	I	6	
DG_Function	n	NP				HD 5						
Repeat	Repeat Count	0										
CH-00	AO	1										
11	£							< <u>.</u> >				~
Label	Channel	Value	4									•
Connected	SN: 21519 (DG306	4B - USE	3 3.0)	Standby								

以下 2 个功能仅在 DG3000/DG4000 系列产品提供:

Repeat →→→ 删除重复波形:删除选择区域的所有重复波形。

下图表示重复该波形 5 次,该波形是 5 ns 脉波,重复 5 次即为 25 ns 脉波。

	💾 🗲 👌	M 🖑) 🖬 🏑	, 💼 🏴 🚟 片 上 H-Z IIVY 即預 🛷 Working Frequency: 200Mbps 🤹	6 I 🧿 🔳
			0 11		18
DG_Functi	ion	NP			
Repeat	Repeat Count	5	5		
CH-00	AO	1			
	1 101				
Label	Channel	Value	4		
Connected	SN: 21519 (DG3064B -	USB 3.0)	Standby		

片 绘制波形 - 输出数值 **1**。

HiZ

-- 绘制波形一高阻抗模式 (High Impedance) 。

使用 DG-tip 设置高阻抗模式须以 16 通道为一组,也就是说若在通道 0

设置高阻抗模式,软件会自动将通道 1~15 也设置为高阻抗模式,但若是使用 OE-tip 则可以针对单一通道设置高阻抗模式。

TD3000 也是可以针对单一通道设置高阻抗模式。

₩₩ 波形反向:将数值 0、1 反向,高阻抗波形不受影响。

XX 绘制资料:输入固定数值、计数器 (Step Counter)、Bit/Baud rate 资料或是时 脉资料。

≪ 硬件设置:设置使用的工作频率、记忆深度、输出工作电压以及输入触发准位。

🔹 环境设置: 变更系统环境设置, 包含工作目录以及 Event Hot Key 等设置。

发送波形:将资料传至硬件进行发送。

重新发送: 将上一次发送的资料重新再发送一次。

停止发送

❷通道标签及通道状态栏位

通道标签:显示目前加入的所有通道,可点选通道标签后在弹出设置视窗内进行通 道设置,点选 (1) 可新增通道标签,点选 (1) 可删除通道标签。 按下滑鼠左键点洗通道标签可以设置通道名称/颜色/数值进制/相位偏移 相位偏移功能仅能在 DG3000/DG4000 系列使用且设置的资料输出速度需在

300Mbps 以下。

DG_Function	NP	
Repeat	Repeat Count 0	
CH-00	Label Name	CH-00
CH-01	/ Color	
CH-02	Value Display Type	Hex 👻
CH-03	Signal	A0 -
CH-04		
CH-05	Phase Delay:	0 / 8 🖨 clock

按下滑鼠右键点选通道标签可以做通道相关调整

DG_Function			NP	
Repeat		Repeat Count	0	
CH-00		A0	0	
CH-01	S Uno	do Label Change		
CH-02				_
CH-03	Ado Ado	d Label d Parallel Bus		
CH-04	Ado	d All Labels		
CH-05	N Del	lete Label		
CH-06	Del	lete All Labels		
CH-07	E Col	mbine Selected L	_abels	
Bus-15:08	De	compose Selecte	ed Label	

通道:显示通道标签所包含的通道。

数值:显示点选光标所在位置的通道数值。

❸波形位置刻度显示区

最左侧黑色数值:显示萤幕显示的起始位置刻度。 最右侧黑色数值:显示萤幕显示的结束位置刻度。 中间黑色数值:显示点选光标所在位置刻度。 中间灰色数值:显示目前滑鼠光标所在位置刻度。

④波形显示区

滚动滑鼠滚轮可以对波形做快速 Zoom In/Zoom Out

按下滑鼠左键点选该键可在周围显示灰阶区域处做波形拖曳

按下滑鼠左键选取范围配合操作工具列的编辑波形功能做编辑

	[∞] <u>, t</u>	Working Frequency: 200Mbp: Memory: 44.517MB	s 🦚
27261	788	28716786	
!	<u> </u>		
		S:(27261786) 136.309m	s
		E:(28546786) 142.734m	S
		0.42311	<u> </u>

按下滑鼠右键点选波形显示区提供修改波形功能

	Hand Cursor Select Cursor	
ф Ф	Undo Redo	
Q Q	Auto Zoom Zoom Area	
	Copy Cut	
	Paste	

母设备状态列

显示设备连线/序号/型号连接介面/设备工作状态

第三章 技术支援

联络方式

Acute 网站: http://www.acute.com.tw

E-Mail: service@acute.com.tw

电话: +886-2-29993275 传真: +886-2-29993276

如果执行软件时出现展示模式, Demo SN: DG3128B (Demo) 请按下列步骤处理:

(1)安装最新版本的软件,请至皇晶科技官网-下载-安装程序,选 Data Generator 下载并安装。

(2)请使用原厂 USB3.0 Cable。

(3)至装置管理员中,检查驱动程式是否存在。

检查方式是把装置接上电源并以 USB 传输线连接上电脑后,在系统装置管理员上是否 有看到 Acute USB 3.0 Data Generator,若没有,请至皇晶科技官网-下载-安装程序, 选 USB 3.0 driver 下载驱动程式并按照其中的疑难排解文件操作。

(4)请移除排线后重新插拔 USB3.0 Cable 或是重新启动电脑,检查驱动程式是否出现。

(5)经过以上步骤,问题还是无法解决,请与本公司联络。

附录一 Tip 定义及尺寸规格

DG4000 系列

DG4K-pod 排线

DG4K-pod 排线 tip 脚位定义

下图为 DG4K-pod 排线的 4 个单端(single-ended) tip 脚位定义。

EV4K-pod 排线

EV4K-pod 排线 tip 脚位定义

EV4K-pod 排线有 2 个单端(single-ended) 的 DG4K-pod tip 及 2 个单端(single-ended)

OE4K-pod 排线

OE4K-pod 排线 tip 脚位定义

OE4K-pod 排线有 2 个单端(single-ended)的 OE4K-pod 排线 tip,下图为 OE4K-pod 排线 tip 脚位定义。

LVDS-pod 排线

LVDS-pod 排线 tip 脚位定义

LVDS-pod 排线有 2 个单端(single-ended)的 LVDS-pod 排线 tip,下图为 LVDS-pod 排线 tip 脚位定义。

DG3000 系列

DG-pod 排线

DG-pod 排线 tip 脚位定义

下图为 DG-pod 排线的 4 个单端(single-ended)排线 tip 脚位定义。

Event-pod 排线

Event-pod 排线 tip 脚位定义

Event-pod 排线有 2 个单端(single-ended) 的 DG-pod tip 及 2 个单端(single-ended)的 Event-pod 排线 tip,下图为 Event-pod 排线 tip 脚位定义。

OE-pod 排线

OE-pod 排线 tip 脚位定义

OE-pod 排线有 2 个单端(single-ended)的 DG-pod tip 及 1 个单端(single-ended)的 OE-pod 排线 tip,下图为 OE-pod 排线 tip 脚位定义。

排线 Tip 尺寸

下图为排线 tip 外型尺寸。(Mates with: 2.54mm box header or pin header)

附录二 透过文字编辑器编写文字向量档(dgv)

档案内容

INPUT: DG_CM0 DG_PA0 Clk:0 Reset Write Check DataB DG_OE INTER //FRE0 VOLTAG	S D:-2, RA:-1, :2, :3, [70]: [70]: [70]: 0:120; VAL 125 QUENCY	158, 2316, ins; 8MHz;										
2.5,3	.3,3.3,	3.3,3.3,	,3.3,3	3,3,1.6;					_			
המידיינים	//DG_CM PM	D, DG_PA	ARA, (Clk, Rese	t, ₩	rīt	e, Dai	taA, DataB,	, DG_OEO			
:Star	t.											
	NP NP LC NP	0 0 5 0	0 1 0 1	0 0 0	0 0 0 0	1 0 0	00h 00h 00h 00h	00h 00h 00h 00h	0 0 0	//LC 5	5	
: AO			•	-	Ĩ	Ĩ			Ĩ			
- 01	NP NP LC NP NP NP	0 0 0 0 0 0	0 1 0 1 0 1 0	0 0 0 0 0 0	1 0 0 0 0	0 0 0 0 0 0	55h 55h 55h 55h 55h 55h 55h	00h 00h 00h 00h 00h 00h 00h	0 0 0 0 0 0	//LC 3	ţ	
: 41	ՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			00h 01h 02h 03h 05h 07h 08h 08h 08h 08h 00h 00h 00h 00h 00h 00	FFh FEh FCh FCh FBh F8h F8h F7h F6h F7h F6h F2h F2h F1h F2h F1h F0h 00h 00h 00h 00h 00h 00h 00h 00h 00		//Loop //Loop //Jump) to) to	A1 AO Start

档案内容里的所有使用双斜线后方的资料皆代表注解,系统不会解释该讯息。

DGV 档案内容包含 4 个部分, 分别为 INPUTS, INTERVAL 或 FREQUENCY,

CLOCK_MODE, VOLTAGE, PATTERN.

INPUTS: 输入信号的设置,每个信号用逗号隔开,信号名称与通道编号用冒号 隔开。 DG CMD:-2,

DG_PARA:-1,

DG_CMD, DG_PARA 为特殊通道, 编号固定为-2 及-1, 用于波形的流程控制, 指令有 NP(No Operation), 参数不管任何值都直接视为 0

LC(Set Loop Count), 回圈可以做多层, 每一层最大值为 1 ^ 23 -1

LP(Loop) / JP(Jump), Jump 与 Loop 的跳跃参数可以是一个 Label 也可以是一个 Address

WE(WaitEvent), 参数部分: 0: 键盘 Event, 1: EV0, 2:EV1, 3:EV2, 4:EV0 or EV1,

5: EV0 or EV2, 6: EV1 or EV2, 7: EV0 or EV1 or EV2,

8=0的反向,9=1的反向,依此类推。

RP(Repeat),参数为重复该笔资料的次数,最大为 2 ^ 23 -1

当信号编号后面有 "#" 字号,后面可以接一个数字由 0~7, 代表信号要 Delay x/8 个 Clock, 假设基频设成 125MHz, 则一个 Clock Cycle 为 8ns, 如果 Delay 数值为 5 就是 Delay 5ns,

例如: Clk:0#4。

DataA[7..0]:15..8 通道编号使用 ".." 当作信号组(Data Bus), 左方数字为 MSB, 右

方数字为LSB。

DG_OE0:120 DG_OE0:120, DG_OE1:121, ... ,DG_OE6:126 DG_OE0 至

DG_OE6

为专用的 Output Enable 信号, DG_OE0 控制 CH0~CH15, DG_OE1

控

制 CH16~CH31,每个 DG_OE 控制 16 个通道,依此类推。 DG_OEx 的值为 0 时代表 Ouput Enable,为 1 时代表 Output

Disable,

TD 3000 系列则是 DG_OE0:16, DG_OE1:17, 每个 DG_OE 控制 8

个

通道。

INTERVAL 或 FREQUENCY: 输入频率的设置可以用时间或是频率, 输入的频率范围为: 100Hz~400MHz, (DG 3000),

100Hz~200MHz (TD3116B/3216B),

100Hz~100MHz (TD3008E)

频率或时间只能择一设置不能同时设置。

CLOCK_MODE: 指定使用内部时钟(填入 Internal)或是外部时钟(填入 Clk-In 或是 CKI) 来发送信号。

VOLTAGE: 该指令后面可以接 8 个数字,每一个数字控制 8 或 16 个通道的输出 电压,所以第一个数字就是控制 CH0~CH15 的输出电压,第二个数 字就是控制 CH16~CH31 的电压,依此类推。而第 8 个数字是控制 Event Pod 的 threshold,不管是 DG3064B, DG3096B 或是

DG3128B,

Event Pod 的 threshold 都是放在第 8 个,此规则适用于 DG 3000 系列产品。至于 TD 3000 系列则是第一个数字就是控制 CH0~CH7 的输出电压,第二个数字就是控制 CH8~CH15 的电压,第三个数字则为 threshold。

没有 POD 的部分可以任意填一个数字,输出电压的数字范围必须 在 0.8~5.0(DG 3000), 0.8~4.5(TD 3000), threshold 的数字范围为 -1.0~8.0(DG 3000), -5.0 ~ 5.0(TD 3000)。

PATTERN: 是资料(波形)区,此区的资料格式每一行代表一个 clock,每一的 第一个非空白文字为 ":" 代表是一个 label,用于 Jump / Loop 的 跳跃点,资料部分每笔资料用空白或是 TAB 隔开,换行就代表是下

一个 clock 的波形, 该行如果没有任何波形资料, 就不算是一个 clock。

备注:

软件提供文字向量档格式检查功能,若文字向量档格式不正确,则 软件会显示错误讯息并告知是哪一行不正确。

👼 Erro	or		×						
8	File for	rmat invalid (Ln. 13)!						
INPUTS DG_CMD DG_PAR SPICS: SPICLK MOSI:2 MISO:3 TESTM: TRIGGE CH-06: CH-06: CH-07: FREQUE	:-2, A:-1, 0, :1, , R:5, 6, 7; NCY 100	000000Hz;							
CLOCK	MOD In	ternal; /	/ Invali	d keywor	d				
VOLIAG 3.3,3. PATTER	в 3,1.6,3 N	3.3,3.3,3	.3,3.3,3	.3;					
NP	0	1	0	1	0	0	0	1	1
NP	0	1	0	1	0	0	0	1	1
NP	0	1	0	1	0	0	0	1	1
NF ND	0	0	0	1	Ň	0	0	1	1
NP	ň	ň	1	ń	ň	ň	ň	1	1
ŇP	ŏ	ŏ	Ô	ŏ	ŏ	ŏ	ŏ	1	1