

# 目录

| 第 | 1章               | 总线分析                  | 1  |
|---|------------------|-----------------------|----|
|   | 1-Wire           | e                     | 10 |
|   | 3-Wire           | e                     | 12 |
|   | 7-Segn           | ment                  | 14 |
|   | A/D C            | Converter             | 17 |
|   | Accele           | eroMeter              | 20 |
|   | AD-M             | 1ux Flash             | 23 |
|   | APML             | L                     | 25 |
|   | BiSS-C           | C                     | 27 |
|   | BSD              |                       | 29 |
|   | CAN -            |                       | 30 |
|   | Closed           | d Caption             | 33 |
|   | DALI             |                       | 35 |
|   | DMX5             | 512                   | 37 |
|   | DP Au            | ux Ch                 | 39 |
|   | eSPI             |                       | 41 |
|   | FlexRa           | ay                    | 43 |
|   | HD Au            | udio                  | 47 |
|   | HDMI             | I-CEC                 | 49 |
|   | HDMI             | I-DDC(EDID)           | 51 |
|   | HDLC             | C                     | 53 |
|   | HDQ -            |                       | 55 |
|   | HID O            | Over I <sup>2</sup> C | 57 |
|   | I <sup>2</sup> C |                       | 59 |



| I3C                                     | 61  |
|-----------------------------------------|-----|
| I <sup>2</sup> S                        |     |
| I80                                     | 68  |
| IDE                                     | 70  |
| Indicator                               | 74  |
| IrDA                                    | 76  |
| ITU656(CCIR656)                         | 78  |
| JTAG                                    | 80  |
| LCD1602                                 |     |
| LIN                                     | 87  |
| Line Decoding                           | 89  |
| Line Encoding                           |     |
| Lissajous                               |     |
| LPC                                     | 104 |
| LPT                                     | 106 |
| M-Bus                                   | 108 |
| Math                                    | 110 |
| Mobile Display Digital Interface (MDDI) | 112 |
| MDIO                                    | 114 |
| MHL-CBUS                                | 116 |
| MII/RMII                                | 118 |
| Microwire                               | 121 |
| MIPI DSI                                | 123 |
| MIPI RFFE                               | 125 |
| MIPI SPMI                               | 126 |



| MMC                  | 128 |
|----------------------|-----|
| ModBus               | 131 |
| NAND Flash           | 133 |
| NEC IR               | 140 |
| PECI                 | 142 |
| PMBus                | 144 |
| ProfiBus             | 146 |
| PS/2                 | 148 |
| PWM                  | 150 |
| QI                   | 154 |
| RC-5                 | 156 |
| RC-6                 | 158 |
| RGB Interface        | 160 |
| S/PDIF               | 162 |
| SDIO                 | 165 |
| Serial Flash         | 168 |
| Serial IRQ           | 175 |
| SGPIO                | 179 |
| Smart Card (ISO7816) | 180 |
| SMBus                | 181 |
| SMI                  | 184 |
| SPI                  | 186 |
| SPI NAND             | 193 |
| SSI                  | 195 |
| ST7669               | 198 |



|   | SVI2                    | 200 |
|---|-------------------------|-----|
|   | SVID (Upon Request)     | 202 |
|   | SWD                     | 204 |
|   | SWP                     | 208 |
|   | UART(RS-232,RS-485)     | 210 |
|   | UNI/O                   | 213 |
|   | USB1.1                  | 215 |
|   | USB PD 2.0              | 217 |
|   | Wiegand                 | 219 |
| 第 | 2章 总线触发                 | 220 |
|   | 硬件触发                    | 223 |
|   | CAN 触发                  | 224 |
|   | I <sup>2</sup> C 触发228  |     |
|   | I <sup>2</sup> S 触发 238 |     |
|   | SPI 触发                  | 243 |
|   | SVID 触发 (Upon Request)  | 247 |
|   | UART 触发                 | 251 |
|   | 总线协议语句式触发               | 254 |
|   | eSPI 触发                 | 258 |
|   | LIN 触发                  | 261 |
|   | LPC 触发                  | 263 |
|   | MIPI SPMI 触发            | 266 |
|   | NAND Flash 触发           | 269 |
|   | SD/eMMC 触发              | 279 |
|   | Serial Flash 触发         | 284 |



| SMBus/PMBus 触发 | 287 |
|----------------|-----|
| SVI2 触发        | 290 |
| USB1.1 触发      | 294 |



# 第1章 总线分析



# 快速新增总线分析

方法一:

可使用精灵新增总线分析。

| 😤 📝 💾 🚍 🗇 🛍 🛍 💽 😏 😂 🕼            | )  🥰 🕊 🔎 🔎 🔎 🖊 🖊 🌢 | 🎙 🍠 🦪 🗐 🗱 😂 🔂 💳 🕯    | 🗮 💅 🕦 🔣 S/R: 200 MHz |
|----------------------------------|--------------------|----------------------|----------------------|
| Time/Div: 125 ns                 | 🖡 📮                | C 👂 📮                |                      |
| Acquired: 10:03:09.828           | 230 ns 430 ns      | 630 ns 830 ns 1.03   | us 1.23 us 1.43 us   |
|                                  |                    |                      | ▲<br>▼               |
| Label Cha Value Activity Trigger |                    |                      | •                    |
|                                  |                    | 400 ns 📕             | 500 ns 🔒 100 ns 🕒 🕮  |
| <b>片口文</b> 此姓曰                   |                    |                      |                      |
| 信号産生病风<br>選擇特式洗師                 |                    |                      | ×                    |
| A至1年4月94.70-404                  |                    |                      |                      |
| DP_AuxCh                         | <b></b>            | Create the I2C label |                      |
| DDC(EDID)                        |                    |                      |                      |
| Line Encoding                    |                    |                      |                      |
| FlexRay                          |                    |                      |                      |
| HD Audio                         |                    |                      |                      |
| HDQ                              |                    |                      |                      |
| 120                              |                    |                      |                      |
| I2C(EEPROM)                      |                    |                      |                      |
| 125                              |                    |                      |                      |
| 180                              |                    |                      |                      |
|                                  |                    |                      |                      |
| ITUESE                           |                    |                      |                      |
| ITAC                             |                    |                      |                      |
| LCD1602                          |                    |                      |                      |
| LIN                              |                    |                      |                      |
| LPC                              |                    |                      |                      |
| Math                             |                    |                      |                      |
| MDIO                             |                    |                      |                      |
| MICROWIRE                        |                    |                      |                      |
| MII / RMII                       |                    |                      |                      |
| IMMC                             |                    |                      |                      |
| ☑ 自动产生颜色                         |                    | 確定 ]                 | 取消                   |
|                                  |                    |                      |                      |

方法二:

步骤一:在画面左侧通道区,按鼠标右键,选择"新增总线分析"。



#### 步骤二:



- 1. 信号名称:可输入名称。
- 2. 信号波形颜色:此颜色将会显示于总线之外框线。
- 同时显示分析内容与波形:打勾时,除显示总线分析结果外,也会显示所对 应之总线通道波形。
- 4. 总线分析选择清单:软件有提供之总线分析列表,将以英文字母训序排列, 您可以选择所需之总线。其中,「LA」项目表示不做总线分析,「DSO」 项目表示示波器通道。
- 5. 高级设置:

每个总线分析之参数都有默认值,若想变更总线分析之参数则可以进入 进阶设定来做调整。进入之后会开启设定画面,其功能可区分为三个部分。 参数设定:主要是设定总线分析之通道安排与分析参数。



波形颜色:设定解碼后数据显示表现之颜色。

分析范围:可使用光标来选择分析的范围。

|      | X                          |
|------|----------------------------|
| 参数设置 |                            |
|      | 8484<br>C1821 (0.923 C1813 |
|      | 0-42 - 912                 |
|      | LARE DIA - DIA ARCAN       |
|      | 2010 A.10 X Int            |
| 波形颜色 |                            |
|      | 设置封包中每个栏位的颜色               |
|      |                            |
|      | 19-194. V                  |
|      | tipat 🗸 🗸                  |
|      | xanihar 🗸 🗸                |
|      | Cata                       |
|      | Telese                     |
| 范围选择 |                            |
| inni | 选择要分析的范围                   |
|      | 起始位置 结束位置                  |
|      | 缓冲区开头 💌 缓冲区结尾 💌            |
|      | 缺省 确定 取消                   |

#### 步骤三:

总线分析通道产生完成,如下图:



- 1. 信号名称
- 2. 总线协议名称
- 3. 总线分析结果
- 4. 显示总线通道之名称及信号

如此, 仅需3个步骤, 就可完成总线分析新增工作。



### 特殊总线分析功能:

逻辑分析仪在进行总线分析时,可用除了文字以外的方式来呈现,亦可使用传输 协议所携带的信息,还原出其原本型态。例如用来传输声音的总线,可以将声音 以波形的方式画出。或者 直接在 PC 上播放声音。而传递影像的总线,就可以 还原成原来的影像。有些总线,适合将所讯号转换成模拟波形,以电压或百分比 的方式呈现。

或者说,逻辑分析仪所截取下来的数字讯号,经由分析后可以采用各种度量衡或 声音(单声道或立体声),影像(平面或立体)呈现。甚至,导入统计功能后,也可 以采统计图未来,皇晶科技逻辑分析仪之特殊总线分析将走向更非常广泛应用领 域。

例如:

#### LCD/CMOS 影像传感器相关的总线分析:

memory





数值统计,柱状图:

转速呈现:



下列总线分析简介即为皇晶科技逻辑分析仪已免费提供之特殊波形分析功能,后续也将会按产业领域的不同,提供所需的功能。



#### UART/CAN/FlexRay..总线 (2009/9 后陆续发行, LA Viewer Ver 2.0):

在波形中,以分析计算出来之 Data Rate,将每个 Bit 以点的方式将刻度标示呈



现。这样,使用者检视时可方便的计算 Bit 数。

Lissajous 分析(2009/9 发行, LA Viewer Ver2.0)

将输入信号以 X-Y 或 I-Q 的方式呈现。



S/PDIF 分析(2010/11 发行, LA Viewer Ver2.5)

以声音波形的方式呈现,並可以把声音播放出来。



| S/PDIF(wave) 0 S/PDIF                                                           | Max: 6572 30000<br>Min: -4496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 参数设置<br>通道设定 CH 0<br>✓ 自动侦测 Bit Rat<br>0.0000<br>(384Kb/s~12.288Mb,<br>□ 画出声音波形 | <ul> <li>★</li> <li>★</li> <li>★</li> <li>Frame 数量</li> <li>192 (32 ~192)</li> <li>★</li> <li>b</li> <li>位顺序(Bit Order)</li> <li>Aux. Data LSB first</li> <li>▲</li> <li>Audio Data LSB first</li> <li>★</li>     &lt;</ul> |

#### I<sup>2</sup>S 分析(2011/9 发行, LA Viewer Ver2.6.3)

以声音波形的方式呈现。



#### ADC 分析(2012/8 发行, LA Viewer Ver2.7.3)



PWM 分析(2012/8 发行, LA Viewer Ver2.7.3)









# 1-Wire

是由美国达拉斯公司(Dallas Semiconductor)所制定。1-Wire 协议定义 Reset Pulse、 Presence Pulse、Write 1、Write 0、Read 1 及 Read 0 等几种信号类型,并由这些 信号类型组合成命令串行。

传输的方式为 LSB(Least-significant bit) 到 MSB(Most-significant bit),传输的速度分为高速(Overdrive speed)和标准(Standard speed)。



| 1-Wire 参数 | 改设置 X                                             |
|-----------|---------------------------------------------------|
| 参数设置      |                                                   |
|           | 采样位置<br>35 us ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ |
| 波形颜色      | 设置1-wire在LA中的通道 CH 0 三                            |
|           | 设置数据的颜色<br>Reset Pulse                            |
|           | Presence Pulse                                    |
| 范围选择      |                                                   |
| <b>₩</b>  | 起始位置     結束位置                                     |
|           | · 缺省 · 确定 取消                                      |

传输模式:根据速度分为标准(Standard)和高速(OverDrive)。

位顺序:设置分析的数据是 LSB first 还是 MSB first。

采样位置: 输入采样时间位置,时间单位固定是 us。



#### 分析结果

### Reset pulse: 重置脉冲。

### Presence pulse: 前置脉冲,后面紧接着数据。

| Time/Div: 640 us              | <b>P</b>    |                     |                        |                      |                    |                |
|-------------------------------|-------------|---------------------|------------------------|----------------------|--------------------|----------------|
| Acquired: 08:00:00            | D 53.66     | 7 ms 54.691 ms      | 55.715 ms 56.739 ms 57 | .763 ms 58           | 3.787 ms 59.811 ms | 60.835 ms      |
| 1-Wire 0 1-Wire               | Idle        | Reset Pulse Presend | e Pulse CC BE          | A6                   | 01                 | Idle           |
| 1-Wire                        |             | 947.8u 8            | 17u                    |                      |                    | 1,844m         |
|                               |             |                     |                        |                      |                    | <b>_</b>       |
| Label Channel                 | •           |                     |                        |                      |                    | •              |
| CH-00 CH-00 CH-00 CH-00 CH-00 | AA XBusX    | 1-Wire(1-Wire)      | •                      |                      |                    |                |
| Timestamp                     | Reset       | Presence            | Data                   | ASCII                |                    | <u> </u>       |
| -0.0303 ms                    | Unknown     |                     |                        |                      |                    |                |
| 22.3578 ms                    | Reset Pulse | Presence Pulse      | CC BE A6 01            |                      |                    |                |
| 30.3575 ms                    | Reset Pulse | Presence Pulse      | CC 44                  | .D                   |                    |                |
| 53.6916 ms                    | Reset Pulse | Presence Pulse      | CC BE A6 01            |                      |                    |                |
| 61.697 ms                     | Reset Pulse | Presence Pulse      | CC 44                  | .D                   |                    |                |
| 85.0284 ms                    | Reset Pulse | Presence Pulse      | CC BE A6 01            |                      |                    |                |
| 93.0326 ms                    | Reset Pulse | Presence Pulse      | CC 44                  | .D                   |                    |                |
| 116.3656 MS                   | Reset Pulse | Presence Pulse      | CC 44                  | <br>D                |                    |                |
| 142.5040 MS                   | Reset Pulse | Presence Pulse      | CC PR 36 01            | .u                   |                    |                |
| 147.6971 ms                   | Reset Pulse | Presence Pulse      | CC 44                  | <br>D                |                    |                |
| 133.0939 ша                   | Reset Fulse | Fresence Furse      | 00 44                  |                      |                    |                |
|                               |             |                     |                        |                      |                    |                |
| •                             |             |                     |                        |                      |                    |                |
|                               |             | _                   | A 18.0                 | 58 ms <mark>B</mark> | 18.254 ms B        | 195.5 us 🕒 🔟 🗰 |



# 3-Wire

3-Wire 总线通讯协议由盛群半导体(HOLTEK)所制定,主要应用于 LED LCD 驱动 IC 的控制和 EEPROM 的读写控制。

| 3-Wire (HOLTEK                                                                      | )参数设置                                           |                                                          | ×                |
|-------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|------------------|
| 参数设置<br>通道设置<br>CS CH<br>WR CH<br>WR CH<br>I RD CH<br>DATA CH                       |                                                 | 波形颜色<br>OPERATION<br>ADDRESS<br>COMMAND<br>DATA<br>START |                  |
| ─应用设置<br>③ LED Driver Iv<br>③ LCD Driver I<br>④ EEPROM<br>HT1620x<br>HT93LC46<br>x8 |                                                 | 分析范围<br>选择要分析的范围<br>起始位置<br>缓冲区开头 💌                      | 结束位置<br>缓冲区结尾 _▼ |
| 数据设置<br>Chip Select Edge<br>O Active High<br>Data Edge<br>O Rising                  | <ul> <li>Active Low</li> <li>Falling</li> </ul> |                                                          |                  |

#### 参数设置

通道设置:设置待测物上各个信号端,接在逻辑分析仪的通道编号。

LED Driver IC: 选择 LED Driver IC 应用

LCD Driver ID: 选择 LCD Driver IC 应用,需选择 IC 种类。

EEPROM:选择 EEPROM 应用,需选择 IC 种类和数据宽度。

Active High: 选择 Chip Select Edge 为 Active High 时,数据有效。



Active Low: 选择 Chip Select Edge 为 Active Low 时,数据有效。

Rising: 选择 Data edge 上升沿时采样数据

Falling: 选择 Data edge 下降沿时采样数据

| Time/Div: 2 us 📒         |                                                  |                                                 |                     |                   |                    |
|--------------------------|--------------------------------------------------|-------------------------------------------------|---------------------|-------------------|--------------------|
| Acquired: 13:17:         | 3.33 us 6.53 us                                  | 9.73 us 12.93 us 16.13 us                       | 19.33 us            | 22.53 us          | 25.73 us           |
| 2 CS                     | IDLE OPER.(WRITE): 5                             | ADDR: 00                                        |                     |                   | DATA: 0            |
| 3-Wire<br>1 WR<br>0 DAT. | 1.335u 1.34u 1.335u 1.34u 1.335<br>2.675u 2.675u | iu 1.34u 1.335u 1.34u 1.335u 1.34u 1.335u 1.34u | 1.335u 1.34u 1.3    | 335u 1.34u 1.335u | 1.34u 1.335u 1.34u |
|                          |                                                  |                                                 |                     |                   | <b>-</b>           |
| Label Chann              |                                                  |                                                 |                     |                   | •                  |
| CH-00 CH-00 CH-00 CH-00  | R Bus 3-Wire(3-Wire)                             | <b>•</b>                                        |                     |                   |                    |
| Timestamp                | Operation                                        | Command                                         | Address             | Data              | <b>▲</b>           |
| 0.000001335 \$           | 5(WRITE)                                         |                                                 | 00                  | 0                 |                    |
| 0.000036115 \$           |                                                  |                                                 | 01                  | 0                 |                    |
| 0.000046815 S            |                                                  |                                                 | 02                  | 0                 |                    |
| 0.00005752 S             |                                                  |                                                 | 03                  | 0                 |                    |
| 0.000068225 \$           |                                                  |                                                 | 04                  | 3                 |                    |
| 0.000078925 \$           |                                                  |                                                 | 05                  | 7                 |                    |
| 0.00008963 %             |                                                  |                                                 | 06                  | 0                 |                    |
| 0.00010033 S             |                                                  |                                                 | 07                  | 0                 |                    |
| 0.000111035 \$           |                                                  |                                                 | 08                  | F                 |                    |
| 0.00012174 S             |                                                  |                                                 | 09                  | В                 |                    |
| 0.00013244 S             |                                                  |                                                 | AO                  | F                 |                    |
| 0.000143145 S            |                                                  |                                                 | OB                  | В                 |                    |
| 0.000153845 S            |                                                  |                                                 | 00                  | F                 | <b>•</b>           |
| •                        |                                                  |                                                 |                     |                   | •                  |
|                          |                                                  | <b>A</b> 3.645 m                                | s <mark>B</mark> 3. | .645 ms 🔒         | o 🕒 🗐 👘            |



# 7-Segment

七段数码管(Seven-segment display)为常用显示数字的电子组件。因为藉由七个发 光二极管以不同组合来显示 10 进制数字,所以称为七段数码管,而七划旁的点 为它的「小数点」。

| Digit | LED                  | А   | В   | С   | D   | Е   | F   | G   |
|-------|----------------------|-----|-----|-----|-----|-----|-----|-----|
| 0     | F G B<br>C C<br>D DP | ON  | ON  | ON  | ON  | ON  | ON  | OFF |
| 1     | F G B<br>F C<br>D DP | OFF | ON  | ON  | OFF | OFF | OFF | OFF |
| 2     | F G B<br>F C<br>D DP | ON  | ON  | OFF | ON  | ON  | OFF | ON  |
| 3     | F G B<br>C C DP      | ON  | ON  | ON  | ON  | OFF | OFF | ON  |
| 4     | F G B<br>F C<br>D DP | OFF | ON  | ON  | OFF | OFF | ON  | ON  |
| 5     |                      | ON  | OFF | ON  | ON  | OFF | ON  | ON  |
| 6     | F G C DP             | ON  | OFF | ON  | ON  | ON  | ON  | ON  |
| 7     | F G B<br>E C<br>D DP | ON  | ON  | ON  | OFF | OFF | OFF | OFF |
| 8     |                      | ON  |



#### 参数设置

| -Segment 参数设置                             |
|-------------------------------------------|
| 通道设置                                      |
| . А                                       |
|                                           |
| в сно 🗧 🖡 сно 🚽 📕 С В                     |
| с сно сно сно сно с                       |
|                                           |
| ○ 共阴 ○ 共阳 D DP                            |
| 波形颜色                                      |
| ↓ 2 2 数据的颜色                               |
|                                           |
|                                           |
| 分析范围 ———————————————————————————————————— |
| <u> 选择要分析的范围</u>                          |
| ▶ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●   |
| 缓冲区并头 ▼ 缓冲区结尾 ▼                           |
| 缺省 确定 取消                                  |
|                                           |

通道设置:设置待测物上,7-Segment 接在逻辑分析仪的通道编号。

**DP**:分析小数点(DP decimal point),请打开设置即可。

有相同低电位时称为共阴,而有相同高电位时则称为共阳。



| Time/Div: 30   | 10 ns           | <b>9</b>   |             |                  |         |          |                 |          |         |                       |        |             |   |
|----------------|-----------------|------------|-------------|------------------|---------|----------|-----------------|----------|---------|-----------------------|--------|-------------|---|
| Acquired: 13   | :32:37.0        | -6.        | 3 us<br>I I | -5.8 us          | -5.3 us | -4.8<br> | Sus<br>Li i i I | -4.3 us  |         | 3.8 us                | -3.3   | us<br>      |   |
|                |                 | 2,         | Unknown     | 3. Unknor        | AD 4.   | Unknown  | 5.              | Unknown  | 7.      | Inknown               | Ь.     | Jnknown) C. | - |
|                | n a             |            | 1 300n      | 300n             | 900n    |          | 300n            | 7        | 300n    |                       |        |             |   |
|                | 18              |            | 1 300n []   | 300n 300n        | 300n    | 7        | 900n            |          | 300n    |                       | -      |             |   |
|                |                 |            |             | 300n 300n        | 300n    | 3000     | 300n            | ] 300n [ | 300n    | 300n [                | 300n   | 3000        |   |
| 7-seament      | 2 D             | 300p       |             | 3000             | 9000    |          | 3000            | 1        | 9006    |                       | 3000   | 3000        |   |
| , sognorie     | 90<br>46        | 3000       | 1           |                  |         | 2 70     |                 |          |         |                       | 3000   | 3000        |   |
|                |                 | 300m       |             |                  | 3000    |          | 2000            | 1        | 9000    |                       | 2000   | 3000        |   |
|                | 6 C             | 2000       | 1 3000      | 3000 3000        | 3000    | 3000     | 2000            |          | 9000    |                       | 3000   | 30011       |   |
|                |                 | 3000       | 2000        | 2000 2000        | 3000    | 3005     | 2000            |          | 2000    | 3005                  | 3000   | 2000        |   |
| 7-Segment      | / DP            | 30011      | 30011       | 300n <u>300n</u> | 30011   | 30011    | 30011           | 30011    | 3000    | 3000                  | 30011  | 3000        |   |
| Label          | Channel         | •          |             |                  |         |          |                 |          |         |                       |        | Ŀ           |   |
| CH-00<br>CH-01 | CH-00 CH-00 But | 7-segment( | 7-Segment   | -                |         |          |                 |          |         |                       |        |             |   |
| Timestamp      | A               | В          | С           | D                | Е       |          | F               | G        |         | DP                    |        | Value       |   |
| -0.0072 ms     | 0               | 1          | 1           | 0                | 0       |          | 0               | 0        |         | 1                     |        | 1.          |   |
| -0.0066 ms     | 1               | 1          | 0           | 1                | 1       |          | 0               | 1        |         | 1                     |        | 2.          |   |
| -0.006 ms      | 1               | 1          | 1           | 1                | 0       |          | 0               | 1        |         | 1                     |        | 3.          |   |
| -0.0054 ms     | 0               | 1          | 1           | 0                | 0       |          | 1               | 1        |         | 1                     |        | 4.          |   |
| -0.0048 ms     | 1               | 0          | 1           | 1                | 0       |          | 1               | 1        |         | 1                     |        | 5.          |   |
| -0.0042 ms     | 1               | 1          | 1           | 0                | 0       |          | 0               | 0        |         | 1                     |        | 7.          | _ |
| -0.0036 ms     | 0               | 0          | 1           | 1                | 1       |          | 1               | 1        |         | 1                     |        | b.          |   |
| -0.003 ms      | 0               | 0          | 1           | 1                | 1       |          | 1               | 0        |         | 1                     |        | с.          |   |
| -0.0024 ms     | 0               | 1          | 1           | 1                | 1       |          | 0               | 1        |         | 1                     |        | d.          |   |
| -0.0018 ms     | 1               | 0          | 0           | 1                | 1       |          | 1               | 1        |         | 1                     |        | E.          |   |
| -0.0011 ms     | 1               | 0          | 0           | 0                | 1       |          | 1               | 1        |         | 1                     |        | F.          |   |
| 0.0007 ms      | 1               | 1          | 1           | 1                | 1       |          | 1               | 1        |         | 0                     |        | 8           |   |
| 0.0011 ms      | 1               | 0          | 1           | 1                | 1       |          | 1               | 1        |         | 0                     |        | 6           |   |
| •              |                 |            |             |                  |         |          |                 |          |         |                       |        | Ŀ           | - |
|                |                 |            |             |                  | A       | 9        | 00 ns           | B -8     | 9.383 m | s <mark>A</mark><br>B | -89.38 | 4 ms 🕒 🛛    | 5 |



# A/D Converter

A/D Converter (Analog-To-Digital Converter),称为模拟数字转换器。

参数设置

| A/D Converter 参数设置                                                                                                                                                                                                                                                                                                                                |                                                                                                              | ×                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------|
| 参数设置<br>通道设置<br>Data Channel<br>数据宽度 8 Bit ▼<br>Channel Start From CH2 ↓<br>「CLK Channel<br>CH0 ↓<br>CH1 ↓<br>数据设置<br>MSB First 2's Complement<br>Chip Select Edge Active High ④ Active Low<br>Data Edge ⑦ Rising ⑦ Falling<br>絵图设置<br>● 曲线图:时间(X)-数据(Y) 颜色<br>● ① ↓<br>● ① ↓<br>● ① ↓<br>○ ① ↓<br>○ ① ↓<br>○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ | <ul> <li>波形颜色</li> <li>DATA</li> <li>分析范围</li> <li>送择要分析的范围</li> <li>起始位置 结束</li> <li>(銀)仲区开头 (銀)</li> </ul> | <b>₹位置</b><br>中区结尾 |
|                                                                                                                                                                                                                                                                                                                                                   | 缺省                                                                                                           | 确定 取消              |

Data Channel Start From: ADC 数据开始之通道

CLK Channel: ADC 之 CLK IN 通道

CS(OE) Channel: ADC 之 Chip Select 通道

数据宽度: ADC 数据宽度,可选择的范围为 4Bit~32Bit

MSB First: 数据由 MSB 开始,缺省为 LSB

2's Complement: 用二补数结果来表现数据

Chip Select Edge: 设置 Chip Select Edge,缺省为 Active Low.

Data Edge: 设置数据之触发源,缺省为 Falling Edge

曲线图:时间(X)-数据(Y)显示以时间为 X 轴;数据为 Y 轴的曲线图

颜色:选择曲线颜色



使用数据最大值和最小值为 Y 轴上下界: 以数据最大值为 Y 轴上界;最小值为 Y 轴下界, 缺省为数据宽度之最大值为 Y 轴上界;最小值为 Y 轴下界

输入上下界: 可手动输入 Y 轴的上/下界

**注意事项:**当启用输入上下界功能时,会将所输入的上下界值写入档案并存在工作目录下(ADC.txt),该档案在每次启用输入上下界功能并输入数值且按下确定时都会被覆写,所以存盘时,除了要存储波形档(\*.law)之外,还要将 ADC.txt 另外存储一份。开启该波形档时,须先将 ADC.txt 置于工作目录下再开启该波形档即可。

#### 分析结果

设置 8 bit 数据宽度, CLK/CS:



仅设置8bit数据宽度:



| Time/Dim: 6 us                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acquired: 17:15:4                                 | 6.0 -62.492 ms -62.482 ms -62.472 ms -62.462 ms -52.452 ms -62.442 ms -62.432 ms -62.422 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CH 0-7 70                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ADC1 ADC1                                         | 7  08  00  07  11  12  15  17  19  18  10   00  01  03  05  07  09  08  00  07  11  13  15  17  19  18  10   00    01  03  05  07  09  08  00  07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ADC2 0<br>A/D Cenverter                           | 7<br>5<br>5<br>5<br>5<br>2.49ms - 62.49ms - 62 |
| CH-00         CH-00           CH-01         CH-00 | RR MADC1(A/D Converter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Timestamp                                         | DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.062502 S                                       | OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -0.0625 S                                         | OD and a second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -0.062498 \$                                      | 0F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -0.062496 \$                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.062494 \$                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.062492 \$                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0.06249 5                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                   | <b>28.354 ms 427.394 ms 399.04 ms</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

设置8 bit 数据宽度,2's Complement 显示





# AcceleroMeter

AcceleroMeter(AccMeter) 总线分析提供了为 SPI 通讯接口输出的加速度计分析 功能,也可以进一步计算平均以及绘制走势曲线图方便观测.

#### 参数设定

| AccMeter 参数设置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 参数设置<br>通道设置<br>CS CH 0 ↓<br>CLK CH 1 ↓<br>SDI CH 2 ↓<br>SDO CH 3 ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| SDO       CH 3         型号       LIS3DH         初始 Full-Scale       2         显示设置         「 曲线图:时间(X) - 资料(Y)       ✓ X ▼ Y ▼ Z         ● 高級显示         ▼ 计算平均值       范围: (N - 1) 到 (N + 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| R/W  M/S    Address  Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| <ul> <li>分析范围</li> <li>选择要分析的范围</li> <li>起始位置</li> <li>结束位置</li> <li>缓冲区开头</li> <li>缓冲区结尾</li> <li>●     </li> <li>●     <li>●     </li> <li>●     <li>●     </li> </li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></li></ul> <li>●     </li> <li>●     </li> <li>●     </li> <li>●     </li> <li>●     </li> <li>●     </li> <li>●      </li> <li>●      </li> <li>●     </li> <li>●      </li> <li>●      </li> <li>●      </li> <li>●     </li> <li>●      </li> <li>●      </li> <li>●</li> |  |  |  |  |  |  |

CS: Chip Select, 须指定 CS 脚位为 Active High 或 Active Low

#### CLK: Clock

SDI: Data 输入脚位,须指定在 Clock 的上升或下降撷取数据

SDO: Data 输出脚位,须指定在 Clock 的上升或下降撷取数据

型号:选择加速度计 IC 的型号

初始 Full-Scale: 选择解碼开始时的 Full-Scale



显示设置:曲线图:开启/关闭以时间和加速度值作曲线绘图的功能

进阶解碼: 开启/关闭地址、数值换算功能

计算平均值:开启/关闭平均统计功能,统计范围为±255 笔资料

#### 分析结果

标准译码功能:



进阶译码功能 + 曲线图绘制:



| Time/Div: 1.049 S                                                             |            |         | 6                                             |                                               |                 |                 | D              | B              |                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------|------------|---------|-----------------------------------------------|-----------------------------------------------|-----------------|-----------------|----------------|----------------|-----------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acquired: 14:17:5                                                             | 5.0        |         | -16.636 S -14.958                             | s -13.281 s                                   | -11.603 S       | -9.925 S        | -8.24          | 8S -6          | .57 S -         | 4.892 S              | -3.214 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3D SPI                                                                        | 18,15,1    | 5, Idle |                                               | r-4MAA<br>=================================== | ~~~~            | A.W.            | ww<br>≫        |                | W.M.            |                      | 2,00<br>1,60<br>1,20<br>0,80<br>0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40<br>-0,40 |
| AccHear                                                                       |            |         | -1.61e <sup>-1</sup> 004ms -147e <sup>+</sup> | 004ms -1.33e+004ms                            | -1.191e+004ms · | 1.045e+004ms -5 | 9290ms -8446ms | s -7518ms -677 | ims -5931ms -50 | 1<br>87ms -4259ms -: | -1:60<br>-2:00<br>H15ms -2572ms -1744ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Label                                                                         | Channe     | el Valu |                                               |                                               |                 |                 |                |                |                 |                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CH-00         CH-00         CH-00           CH-01         CH-00         CH-00 | <b>A</b> A | Bus 3   | BD SPI(AccMeter)                              | -                                             |                 |                 |                |                |                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sample                                                                        | R/W        | M/S     | Address                                       | Data                                          | Acc. X          | Acc. Y          | Acc. Z         | Avr. X         | Avr. Y          | Avr. Z               | ▲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -3220320060                                                                   | Read       | 00      | OUTX_H(29)                                    | 03                                            | 0.047G          |                 |                | 0.055G         |                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -3220249673                                                                   | Read       | 00      | OUTY_H(2B)                                    | F9                                            |                 | -0.109G         |                |                | -0.109G         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -3220179286                                                                   | Read       | 00      | OUTZ_H(2D)                                    | 3F                                            |                 |                 | 0.984G         |                |                 | 0.993G               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -3217215386                                                                   | Read       | 00      | OUTX_H(29)                                    | 04                                            | 0.063G          |                 |                | 0.058G         |                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -3217144999                                                                   | Read       | 00      | OUTY_H(2B)                                    | F9                                            |                 | -0.109G         |                |                | -0.109G         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -3217074612                                                                   | Read       | 00      | OUTZ_H(2D)                                    | 40                                            |                 |                 | 1.000G         |                |                 | 0.990G               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -3214087317                                                                   | Read       | 00      | OUTX_H(29)                                    | 04                                            | 0.063G          |                 |                | 0.063G         |                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -3214016930                                                                   | Read       | 00      | OUTY_H(2B)                                    | F9                                            |                 | -0.109G         |                |                | -0.109G         |                      | <b>*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •                                                                             |            |         |                                               |                                               |                 |                 |                |                |                 |                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                               |            |         |                                               |                                               |                 |                 | -              |                |                 |                      | les texter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                               |            |         |                                               |                                               |                 |                 | A 174          | 2395601        | 23731           | 5551 <mark>B</mark>  | 1531603504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



# **AD-Mux Flash**

闪存传输接口有分为 Parallel(并列)与 Serial(序列),由于 Parallel 方式的脚位数过多,因此将 Address 与 Data 脚位共享是降低脚位数的一种做法,此种界面的闪存即为 AD-Mux Flash。

#### 参数设置

| AD Mux Flash 参数设置                                                                                                                                                   |                                                                                                                   |                |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
| 通道设置<br>Amax A22 ▼ ADQ[0](LSB) [H7 ↓<br>○ 自动递增 ADQ[15:0]=> CH[22:7]<br>○ 自定义 A[22:16]=> CH[29:28]<br>Flash                                                          | Configuration<br>Wait State Burst Length<br>9th  16-Word Linear Burst<br>RDY Polarity<br>Burst Wrap Around<br>Yes | •              |  |  |  |  |  |
| CE#f         CH 24         AVD#         CH 23            OE#         CH 29         CLK         CH 26            WE#         CH 33          RDYf/WAITp         CH 30 | <ul> <li>波形颜色</li> <li>范围选择</li> <li>道图选择</li> <li>送择要分析的范围</li> <li>起始位置</li> <li>2</li> </ul>                   | •              |  |  |  |  |  |
| PSRAM<br>✓ has PSRAM LB#p CH 28 →<br>CE#p CH 25 → UB#p CH 32 →                                                                                                      | Burst Address<br>Read Data<br>Write Data<br>Write Data<br>↓<br>秋省<br>孫中区结尾                                        | <b>▼</b><br>取消 |  |  |  |  |  |

Amax: 设定 Address 脚位的数量,会因为容量而有所不同。

自动递增/自定义:选择自动递增时,只需设置 ADQ[0](LSB),其他通道程序会 自动扩增。若选择自定义,则需按下旁边按键做通道设置。

|        |         |         | Address / | ′ Data B | us           | ×      |
|--------|---------|---------|-----------|----------|--------------|--------|
| ADQ[0] | CH 7 ·  | ADQ[8]  | CH 21 ·   | A[16]    | CH 0 • A[24] | сно 🔺  |
| ADQ[1] |         | ADQ[9]  | CH 22 -   | A[17]    |              |        |
| ADQ[2] | CH 15 · | ADQ[10] | СН 9 •    | A[18]    |              |        |
| ADQ[3] | CH 16 • | ADQ[11] | CH 10 -   | A[19]    | CH 3 •       |        |
| ADQ[4] | CH 17 • | ADQ[12] | CH 11 -   | A[20]    | CH 4 ·       |        |
| ADQ[5] | CH 18 · | ADQ[13] | CH 12 -   | A[21]    | CH 5 •       |        |
| ADQ[6] | CH 19 · | ADQ[14] | CH 13 -   | A[22]    | CH 6 ·       |        |
| ADQ[7] | CH 20 • | ADQ[15] | CH 14 -   | A[23]    | CH 0 🔶       |        |
|        |         |         |           |          | <u>OK</u>    | Cancel |



Flash: Flash 使用的控制脚位。

**PSRAM:** PSRAM 使用的控制脚位。部份 MCP 会同时有 Flash 与 PSRAM, 若勾选 has PSRAM 时可同时对 PSRAM 做分析。

**Configuration:**由于 AD-Mux Flash 可以透过命令设置相关参数,逻辑分析仪撷 取波形时因为不晓得当时实际的设置,会造成分析上的错误。所以需请使用者在 此设置告知。

| 2  | 6  | 4 | 田 |
|----|----|---|---|
| フィ | 71 | 沰 | 不 |





# APML

APML (Advanced Platform Management Link) 总线通讯协议由 AMD 所制定, APML 是一种频外 (out-of-band) 的电源管理与提升系统可靠度机制,这样的技 术在 6 核心 Opteron 处理器平台才具备。

参数设置

| APML     | _ 参数设                  | 置                                         |                       | ×                                     |
|----------|------------------------|-------------------------------------------|-----------------------|---------------------------------------|
| 參數设置     | <u>里</u>               |                                           | 波形颜色                  |                                       |
|          | ─通道设置-                 |                                           | 🕕 设置命令的颜色             |                                       |
|          | SCL                    | сно •                                     | Command               | <b>—</b>                              |
|          | SDA                    | CH 1 ·                                    | Address               |                                       |
|          |                        |                                           | Write / Read          |                                       |
|          | -地址设置-                 |                                           | Start / Stop / Sr     |                                       |
|          | Г                      | 7-bit addressing (Include R/W in Address) | ACK / NACK            |                                       |
|          | _                      |                                           | PEC / Byte Count /Wor | d 🔽 🗸                                 |
|          | _ PEC<br> _ ∕ntmba∈ ≢i |                                           | Data                  | <b></b>                               |
|          | _ 恣略-モ釈                |                                           |                       |                                       |
| 分析论图     | Ð                      |                                           |                       |                                       |
| <u>,</u> | 选择要分析                  | 的范围                                       |                       |                                       |
|          | 起始位置<br>缓冲区开头          | 结束位置<br>•                                 | [                     |                                       |
|          |                        |                                           |                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

通道设置: 设置待测物上,各个信号端,接在逻辑分析仪的通道编号。

7-bit addressing (Include R/W in Address):显示8位宽度地址(7位宽度地址加上1位 Rd/Wr)。

PEC:选择 Packet Error Check。

忽略噪声:分析时忽略因跳变过缓所造成的噪声。



| Time/Div: 32 us         | <b>9</b>       |                 |               |                    |            |                                    |                     |                    |  |  |
|-------------------------|----------------|-----------------|---------------|--------------------|------------|------------------------------------|---------------------|--------------------|--|--|
| Acquired: 18:11:4       | 6 199.48<br>11 | 6 ms 199.537 ms | 199.588 ms    | 199.639 ms         | 199.69 ms  | 199.742 ms                         | 199.793 ms          | 199.844 ms         |  |  |
|                         | Idle           | s Ad            | dr(SB_TSI(4C) | Wr A               | Data:SBTSI | x01(01)                            |                     | Idle               |  |  |
| APU-SIC 0 SCL           |                |                 |               |                    |            |                                    |                     |                    |  |  |
| 1 SDA                   |                | 21.945w         | 36.945u       | 21.47u             |            |                                    |                     | 188.935u           |  |  |
|                         |                |                 |               |                    |            |                                    |                     |                    |  |  |
|                         |                |                 |               |                    |            |                                    |                     | <b>_</b>           |  |  |
| Label Channel 1         |                |                 |               |                    |            |                                    |                     |                    |  |  |
| CH-00 CH-00 CH-00 CH-00 |                | PU-SIC(APML)    | -             |                    |            |                                    |                     |                    |  |  |
| Timestamp               | Addr           | Value           |               |                    | Descrip    | tion                               |                     | ▲                  |  |  |
| 0.149987675 \$          | SB-TSI(4C)     | SBTSI_x07(07)   |               |                    | High Te    | mperature Th                       | nreshold Hig        | øh Byte Registe: 💻 |  |  |
| 0.19950361 \$           | SB-TSI(4C)     | SBTSI_x01(01)   |               |                    | CPU Temj   | CPU Temperature High Byte Register |                     |                    |  |  |
| 0.19998357 S            | SB-TSI(4C)     | CpuTempInt(OF)  |               |                    | CPU Int    | CPU Integer temp. 15               |                     |                    |  |  |
| 0.249499505 \$          | SB-TSI(4C)     | SBTSI_x01(01)   |               |                    | CPU Tem    | CPU Temperature High Byte Register |                     |                    |  |  |
| 0.249979465 \$          | SB-TSI(4C)     | CpuTempInt(OF)  |               |                    | CPU Int    | CPU Integer temp. 15               |                     |                    |  |  |
| 0.299495395 \$          | SB-TSI(4C)     | SBTSI_x01(01)   |               |                    | CPU Tem    | CPU Temperature High Byte Register |                     |                    |  |  |
| 0.299975355 \$          | SB-TSI(4C)     | CpuTempInt(OF)  |               |                    | CPU Int    | eger temp                          | 15                  | ĭ                  |  |  |
|                         |                |                 |               |                    |            |                                    |                     |                    |  |  |
|                         |                |                 |               | <mark>■</mark> -48 | 8.969 ms 📕 | -48.969                            | ms <mark>A</mark> B | 20 ns 🕒 🔟 💷        |  |  |



# **BiSS-C**

BiSS-C(Bidirectional Synchronous Serial C-mode)通信协议是一种由德国 Ic-Haus 公司所提出的一种开放式全双工同步串行通信协议,专门为满足实时,双向,高 速的传感器通信而设计,在硬件上兼容工业标准 SSI 总线协议。现已成为传感器 通信协议的国际化标准。

#### 参数设置

| BiSS-C 参数设                                                                                     | 置 ×                                                    |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 通道设置<br>MA CH 0 式 SLO CH 1 式<br>Type of data Single Cycle Data<br>Serial data length (bits) 12 | 波形颜色<br>Ack/ADR<br>Start<br>CDS/CTS<br>Data/Cmd        |
| 范围选择<br>选择要分析的范围<br>起始位置 缓冲区开头 マ<br>结束位置 缓冲区结尾 マ                                               | Flag/IDL/ID<br>CRC<br>Stop/Ex<br>Read/IDS<br>Write/IDA |
|                                                                                                | 1                                                      |

MA/SLO: 设置信号通道

Type of data: 设置要解碼的类型,有三种选择: Register Data-CDM, Register

Data-CDS, Single Cycle Data.

Serial data length(bits):设置在 Single Cycle Data 时的资料长度。



| Time/Divelus |        |            |            |          |        |      |          | A       |       |      |          |       |        |        |          |      |
|--------------|--------|------------|------------|----------|--------|------|----------|---------|-------|------|----------|-------|--------|--------|----------|------|
| Acquired:    | 09:49  | .42.569    | , 173.1968 | 85 ms _  |        | . 17 | 3.20008  | 35 ms _ |       | 173  | 3.203285 | 5 ms  |        | 173    | 3.206485 | Τ.   |
|              |        |            |            |          | I<br>T |      | 1.1.     |         |       |      |          |       |        |        |          |      |
| SCD          |        | 0,1        | IDLE       | AS       |        |      |          | D:000   |       |      |          | F:3   | C      | RC:3A  |          | Η    |
| L            | BiSS-C |            | ^^         | <u> </u> | -      |      |          |         |       |      | _        | _     |        |        |          |      |
| CDM          |        | 0,1        | Reading    |          |        |      |          |         | 5     |      |          |       |        |        |          |      |
| <u> </u>     | BiSS-0 |            |            | _        | _      | _    | _        |         |       | _    | _        | _     | _      | _      |          |      |
|              |        |            | CRC:7      |          |        |      |          |         | Р     |      |          |       |        |        |          |      |
| CDC          |        | 64.0       |            |          |        |      |          |         |       |      |          |       |        |        |          |      |
| CDS          |        | MA         |            |          |        |      |          |         |       |      |          |       | $\Box$ |        |          |      |
|              |        | SLO        |            |          |        |      | 5        | .65 us  |       |      |          | 2.1   | 35 us  |        |          |      |
|              | BISS-C |            | L          | -        |        |      |          |         |       |      |          |       |        |        |          |      |
|              |        |            |            |          |        |      |          |         |       |      |          |       |        |        |          | -    |
| Label        |        | Channel    | •          |          |        |      |          |         |       |      |          |       |        |        |          | i –  |
| OUT CH-      | о сн   | -00 7 7    |            |          | 8-0    |      | -        |         |       |      |          |       |        |        |          |      |
| СН           | 01 CH  | -00 1 L1 L |            |          | 5-C)   |      | <u> </u> |         |       |      |          |       |        |        |          |      |
| Sample       | CTS    | ID(IDS)    | ADR (CMD)  | R/W      | DØ     | D1   | D2       | D3      | D4    | D5   | D6       | D7    | D8     | D9     | D10      |      |
| 2089753      | 1      | 0          | 70         | Read     | 00     |      |          |         |       |      |          |       |        |        |          |      |
| 2381312      | 1      | 0          | ØF         | Read     | 00     | 40   | 80       | 80      | 00    | ØA   | 00       | 82    | 00     | 00     | 00       |      |
| 4426118      | 1      | 0          | 1F         | Read     | 00     |      | _        |         |       |      |          |       |        |        |          |      |
| 4662456      | 1      | 0          | 42         | Read     | 20     | 00   | 50       | 20      |       |      |          |       |        |        |          |      |
| 5251012      | 1      | 0          | 78         | Read     | 40     | 48   | 59       | 20      | 00    | 00   | 00       | 00    |        |        |          |      |
| 6346663      | 1      | 0          | 76         | кеаа     | 11-    | 00   | 0.0      |         |       |      |          |       |        |        |          | _    |
| 6950714      | 1      | U          | 70         | кеаа     | 00     | 00   | 00       | _       | -     |      |          |       | -      | -      | -        |      |
|              |        |            |            |          |        |      |          |         |       |      |          |       |        |        |          |      |
|              |        |            |            | 5.7723   | 14129  | Hz . |          | 0.1291  | 69282 | 3 Hz | A        | 0.120 | 53420  | 772 H7 | GIN      | 1111 |
|              |        |            | <u>~</u>   |          |        |      | ·        |         |       |      | P        |       |        |        |          | 1.00 |



## BSD

BSD(Bit Serial Device)通讯协议是一种控制接口,主要用在车用的电池系统。

#### 参数设置

| BSD 参数设置 ×                                 |                          |          |  |  |  |  |  |  |
|--------------------------------------------|--------------------------|----------|--|--|--|--|--|--|
| 通道设置<br>Data CH 0 <u>;</u>                 | 波形颜色<br>① DIR<br>Address | <b>·</b> |  |  |  |  |  |  |
| Bit rate Auto                              | Data                     | <b></b>  |  |  |  |  |  |  |
| 范围选择<br>选择要分析的范围                           |                          |          |  |  |  |  |  |  |
| 起始位置 <u>缓冲区开头</u> 结束位置 缓冲区结尾 ▼<br>缺省 确定 取消 |                          |          |  |  |  |  |  |  |

Data: 设置信号通道

Bit rate: 讯号的传输速度。





# CAN

CAN(Controller Area Network)通讯协议于 80 年代由 Bosch 首先发展,为的是因应使用于新型汽车上不断增加的电子装置,这些装置使汽车增加许多功能与附加价值,也增加控制系统的复杂度。CAN Bus 采用差动信号传输,有两条所谓的CAN\_H(High)与 CAN\_L(Low)的传输线。CAN\_H 得到的数据与 CAN\_L 得到的数据反向。

#### 参数设置

| CAN 参数设置         |                 |               | ×                 |
|------------------|-----------------|---------------|-------------------|
| 参数设置 —————       |                 |               |                   |
| 通道设置             |                 |               | ☑ 自动侦测 Data Rate  |
| Differential     | CAN_H           | DSO 1         | 125 <b>Kbps</b>   |
| The Data source  | from DSO CAN_L  | DSO 2         | (5 Kbps ~ 1 Mbps) |
| Data_1           | Bus Wire: CAN_H | Data_0        | ┏ 波形中显示刻度         |
|                  | Bus wire: CAN_L |               |                   |
| 波形颜色             |                 |               |                   |
|                  |                 | RTR bit       |                   |
| Identifier       | <u> </u>        | SRR bit       |                   |
| Data length code |                 | IDE bit       |                   |
| Data lengui code |                 | Decenwed bit  | <u> </u>          |
| Data             | <b>_</b>        | Reserved bit  | <u> </u>          |
| CRC              |                 | Delimiter bit | <u> </u>          |
| ACK Slot         |                 | Error Frame   | <b></b>           |
| End of Frame     | ·               | Error State   | <b>•</b>          |
| 分析范围             |                 |               |                   |
| · 选择要分标          | 析的范围            |               |                   |
| #                | 结束位             | 置             |                   |
| 缓冲区开             | チャップ (緩)中区      | 结尾 💌          |                   |
|                  |                 | 缺省            | 确定 取消             |

通道设置:缺省为 Differential。



Differential: 物理层信号测量,信号来自叠加示波器,测量 CAN 信号 CAN\_H, CAN\_L。可设置的 DSO 通道范围为 1-6。

CAN\_H/CAN\_L: 可直接测量稳定的物理层,或经由收发器(Transceiver)转换过 后的逻辑信号。

自动侦测 Data Rate: 缺省为自动侦测 Data Rate。

打勾的时候,由程序协助侦测 Data Rate。若没打勾时,使用者可以选择内建的 Data Rate 设置,或自行输入 Data Rate。允许的 Data Rate 范围为 5Kbps-1Mbps。 若开启 CAN FD 功能后,因 Data Rate 会变动,所以此功能将会自动关闭。 波形中显示刻度:在波形上面显示刻度,若开启 CAN FD 功能后,因 Data Rate 会变动,所以此功能将会自动关闭。

#### 分析结果



使用来自示波器 Differential 信号进行分析。

使用 CAN\_H 信号来进行分析。


| Time/Div:<br>Acquired:                                                            | 4 us<br>08:00:00.0                                                                                                   | <b>3</b>                                                           |                                                                                             | 15.56                                                        | us                                                           | 32:                                                          | 1.96 us                                                                                                           |                                                                                                                      | 328.36 us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 334.76                                                                                                                                                                                                                                                                             | us 34                                              | 1.16 us 34     | 47.56 us 35: | 3.96 us 360.36 us                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAN                                                                               | 0 CAN_                                                                                                               |                                                                    | F                                                                                           |                                                              |                                                              |                                                              |                                                                                                                   | BaseID                                                                                                               | :112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                    | R                                                  | RTR:0 IDE:0 RO | 0 DLC:       | 8 DAT:CD                                                                                                                                                                                                                                  |
|                                                                                   | CAN                                                                                                                  |                                                                    | 7.50                                                                                        | L                                                            | 2.                                                           | 5u                                                           | 7.5                                                                                                               | iu                                                                                                                   | 2.49u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.01u 2.                                                                                                                                                                                                                                                                           | 49u                                                | 10.01u         | 2.49u 7      | .51u 4.39u                                                                                                                                                                                                                                |
|                                                                                   |                                                                                                                      |                                                                    |                                                                                             |                                                              |                                                              |                                                              |                                                                                                                   |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                    |                                                    |                |              | -                                                                                                                                                                                                                                         |
| Label                                                                             | Chann                                                                                                                | el 💶                                                               |                                                                                             |                                                              |                                                              |                                                              |                                                                                                                   |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                    |                                                    |                |              | •                                                                                                                                                                                                                                         |
|                                                                                   | 00 CH-00 R                                                                                                           | R Bus                                                              | CA                                                                                          | N(CA                                                         | N)                                                           |                                                              | ŀ                                                                                                                 | -                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                    |                                                    |                |              |                                                                                                                                                                                                                                           |
| Tim                                                                               | Frame Type                                                                                                           | ID                                                                 | DLC                                                                                         | Data                                                         | a                                                            |                                                              |                                                                                                                   |                                                                                                                      | CRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (h) ASCI                                                                                                                                                                                                                                                                           | II(Data)                                           | Informatio     | m            | Frame Duration 🔺                                                                                                                                                                                                                          |
| 0.30                                                                              | Std Data                                                                                                             | 112                                                                | 8                                                                                           | CD 1                                                         | F1 9                                                         | 7 El                                                         | 01 90                                                                                                             | 07 7                                                                                                                 | 7D 38F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                  | }                                                  | Data Rate:     | 400 Kbps     | 282 46 118                                                                                                                                                                                                                                |
| 0.61                                                                              | Std Data                                                                                                             | 112                                                                | 8                                                                                           | CD 1                                                         | ទា ០                                                         |                                                              |                                                                                                                   |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                  |                                                    |                |              | 202.40 00                                                                                                                                                                                                                                 |
| 0.92                                                                              |                                                                                                                      |                                                                    | -                                                                                           | 00.                                                          | FT 9                                                         | 7 El                                                         | 01 90                                                                                                             | 077                                                                                                                  | 7D 38F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                  | }                                                  |                |              | 282.47 us                                                                                                                                                                                                                                 |
| 1 23                                                                              | Std Data                                                                                                             | 112                                                                | 8                                                                                           | CD 1                                                         | F1 9                                                         | 7 El<br>7 El                                                 | 01 90                                                                                                             | C 07 7<br>C 07 7                                                                                                     | 7D 38F:<br>7D 38F:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                  | }                                                  |                |              | 282.47 us<br>282.46 us                                                                                                                                                                                                                    |
| 1.23                                                                              | Std Data<br>Std Data                                                                                                 | 112<br>112                                                         | 8                                                                                           | CD I<br>CD I                                                 | F1 9<br>F1 9<br>F1 9                                         | 7 El<br>7 El<br>7 El                                         | 01 90                                                                                                             | C 07 7<br>C 07 7<br>C 07 7                                                                                           | 7D 38F<br>7D 38F<br>7D 38F                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                  | ····}                                              |                |              | 282.47 us<br>282.46 us<br>282.47 us                                                                                                                                                                                                       |
| 1.54                                                                              | Std Data<br>Std Data<br>Std Data                                                                                     | 112<br>112<br>112                                                  | 8 8 8                                                                                       | CD I<br>CD I<br>CD I                                         | F1 9<br>F1 9<br>F1 9<br>F1 9                                 | 7 E1<br>7 E1<br>7 E1<br>7 E1                                 | 01 90<br>01 90<br>01 90<br>01 90                                                                                  | C 07 7<br>C 07 7<br>C 07 7<br>C 07 7                                                                                 | 7D 38F.<br>7D 38F.<br>7D 38F.<br>7D 38F.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>5<br>5                                                                                                                                                                                                                                                                        | ····}                                              |                |              | 282.47 us<br>282.46 us<br>282.46 us<br>282.47 us<br>282.46 us                                                                                                                                                                             |
| 1.54                                                                              | Std Data<br>Std Data<br>Std Data<br>Std Data                                                                         | 112<br>112<br>112<br>112                                           | 8<br>8<br>8<br>8                                                                            | CD I<br>CD I<br>CD I<br>CD I<br>CD I                         | F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9                         | 7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1                 | 01 90<br>01 90<br>01 90<br>01 90<br>01 90                                                                         | 077<br>077<br>077<br>077<br>077<br>077                                                                               | 7D 38F.<br>7D 38F.<br>7D 38F.<br>7D 38F.<br>7D 38F.<br>7D 38F.                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br>5<br>5<br>5                                                                                                                                                                                                                                                                   | ····}<br>····}                                     |                |              | 282.47 us<br>282.46 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.47 us<br>282.47 us                                                                                                                                                   |
| 1.54<br>1.85<br>2.16                                                              | Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data                                                             | 112<br>112<br>112<br>112<br>112<br>112                             | 8<br>8<br>8<br>8<br>8<br>8<br>8                                                             | CD I<br>CD I<br>CD I<br>CD I<br>CD I<br>CD I                 | F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 0         | 7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1         | 01 90<br>01 90<br>01 90<br>01 90<br>01 90<br>01 90                                                                | C 07 7<br>C 07 7<br>C 07 7<br>C 07 7<br>C 07 7<br>C 07 7                                                             | 7D 38F.<br>7D 38F.<br>7D 38F.<br>7D 38F.<br>7D 38F.<br>7D 38F.<br>7D 38F.                                                                                                                                                                                                                                                                                                                                                                                                                           | 5<br>5<br>5<br>5                                                                                                                                                                                                                                                                   | ····}<br>····}<br>····}                            |                |              | 282.47 us<br>282.47 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.46 us                                                                                                                                      |
| 1.23<br>1.54<br>1.85<br>2.16<br>2.47<br>2.78                                      | Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data                                     | 112<br>112<br>112<br>112<br>112<br>112<br>112<br>112               | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                        | CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1 | F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9         | 7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1 | 01 90<br>01 90<br>01 90<br>01 90<br>01 90<br>01 90<br>01 90                                                       | C 07 7<br>C 07 7<br>C 07 7<br>C 07 7<br>C 07 7<br>C 07 7<br>C 07 7                                                   | 7D 38F.<br>7D 38F.<br>7D 38F.<br>7D 38F.<br>7D 38F.<br>7D 38F.<br>7D 38F.                                                                                                                                                                                                                                                                                                                                                                                                                           | 5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                         | ····}<br>····}<br>····}                            |                |              | 282.47 us<br>282.47 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us                                                                                                            |
| 1.23<br>1.54<br>1.85<br>2.16<br>2.47<br>2.78<br>3.09                              | Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data                         | 112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112        | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                         | CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1 | F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9 | 7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1 | 01 90<br>01 90<br>01 90<br>01 90<br>01 90<br>01 90<br>01 90<br>01 90                                              | C 07 7<br>C 07 7                               | 7D         38F.                                                                                                         | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                               | ····}<br>····}<br>····}<br>····}<br>····}          |                |              | 282.47 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us                                                                                                            |
| 1.25<br>1.54<br>2.16<br>2.47<br>2.78<br>3.09<br>3.40                              | Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data                         | 112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112 | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                     | CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1 | F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9 | 7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1 | 01 9(<br>01 9(<br>01 9(<br>01 9(<br>01 9(<br>01 9(<br>01 9(<br>01 9(<br>01 9(<br>01 9(                            | C 07 7<br>C 07 7                     | 7D         38F.                           | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                          | }<br>}<br>}<br>}<br>}<br>}                         |                |              | 282.47 us       282.46 us       282.47 us       282.46 us       282.47 us       282.46 us       282.47 us       282.47 us |
| 1.25<br>1.54<br>2.16<br>2.47<br>2.78<br>3.09<br>3.40<br>3.71                      | Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data | 112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112 | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1 | F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9 | 7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1 | 01 9(<br>01 9(          | C 07 7<br>C 07 7           | 7D         38F                                             | 5            5            5            5            5            5            5            5            5            5            5            5            5            5            5            5            5            5                                                     | ····}<br>····}<br>····}<br>····}<br>····}<br>····} |                |              | 282.47 us<br>282.47 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us                                                                     |
| 1.25<br>1.85<br>2.16<br>2.47<br>2.78<br>3.09<br>3.40<br>3.71<br>4.02              | Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data | 112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112 | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1 | F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9 | 7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1 | 01 9(<br>01 9( | C 07 7<br>C 07 7 | 7D         38F.           7D         38F. | 5            5            5            5            5            5            5            5            5            5            5            5            5            5            5            5            5            5            5            5            5            5 | }<br>}<br>}<br>}<br>}<br>}                         |                |              | 282.47 us<br>282.47 us<br>282.46 us<br>282.47 us<br>282.47 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.47 us<br>282.47 us                                           |
| 1.53<br>1.54<br>1.85<br>2.16<br>2.47<br>2.78<br>3.09<br>3.40<br>3.71<br>4.02<br>◀ | Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data | 112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112 | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1<br>CD 1 | F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9<br>F1 9 | 7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1<br>7 E1 | 01 90<br>01 90                   | C 07 7<br>C 07 7           | 7D         38F.                           | 5            5            5            5            5            5            5            5            5            5            5            5            5            5            5            5            5            5                                                     | }<br>}<br>}<br>}<br>}<br>}<br>}                    |                |              | 282.47 us<br>282.47 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.47 us<br>282.47 us<br>282.47 us                                           |



# **Closed Caption**

Closed Caption 是一种影像视讯的编码方法,可以用来将文字、字幕等数据编码 并加入影像中,播放器可以使用 Closed Caption 译码器将隐藏于影像讯号中的文 字取出来。

### 参数设置

| Closed Cap | ption参数设置                                     | < |
|------------|-----------------------------------------------|---|
| 通道设置       | LA通道 CH O 文                                   | _ |
| 波型颜色       |                                               | _ |
|            | Clock run-in Start Start Start Parity         |   |
| 范围选择       | 选择要分析的范围<br>起始位置    结束位置<br>缓冲区开头 ▼   缓冲区结尾 ▼ | _ |
|            | 缺省 确定 取消                                      |   |

通道设置: 设置待测物上的信号端接在逻辑分析仪的通道编号。



| Time/Div: 5 us             |             |                   |                           |                |          |                |       |            | 11   |
|----------------------------|-------------|-------------------|---------------------------|----------------|----------|----------------|-------|------------|------|
| Acquired: 16:44:           | -2.102 S    | -2.102 S          | -2.102 S                  | -2.102 S -2.10 | 02 S -2  | .102 \$ -2.102 | s     | -2.102 S   | . T. |
|                            |             |                   | • • • • • • • • • • • • • |                |          |                | 1.1.1 |            |      |
| cc cc -                    | Idle        | Clock run-in      | Start                     | Data:00        | р        | Data:00        | P     | Idle       |      |
| Clared Caption.            |             |                   | 4.2u                      | 14.2u          |          | 14u            |       | 33.317m    |      |
|                            |             |                   |                           |                |          |                |       |            |      |
| Label                      | •           |                   |                           |                |          |                |       | <u>L</u>   | ·    |
| CH-00 CH-00<br>CH-01 CH-00 |             | C(Closed Caption) | •                         |                |          |                |       |            |      |
| Timestamp                  | Data Byte 1 | Data Byte 2       | ASCII                     |                |          |                |       |            | •    |
| -2.1021082 S               | 00          | 00                |                           |                |          |                |       |            |      |
| -2.0687414 \$              | 00          | 00                |                           |                |          |                |       |            |      |
| -2.0353746 \$              | 00          | 00                |                           |                |          |                |       |            |      |
| -2.0020078 \$              | 00          | 00                |                           |                |          |                |       |            |      |
| -1.968641 S                | 00          | 00                |                           |                |          |                |       |            |      |
| -1.9352742 S               | 00          | 00                |                           |                |          |                |       |            |      |
| -1.9019074 S               | 00          | 00                |                           |                |          |                |       |            |      |
| -1.8685406 S               | 00          | 00                |                           |                |          |                |       |            |      |
| -1.8351738 S               | 14          | 25                | .*                        |                |          |                |       |            | •    |
| •                          |             |                   |                           |                |          |                |       |            | •    |
|                            |             |                   |                           |                |          |                |       |            |      |
|                            |             |                   |                           | -              | 3.4 us 📕 | -15 us         | 3     | -11.6 us 🕒 | 111  |



# DALI

DALI (Digital Addressable Lighting Interface,数字可调光接口)协议是用于满足 现代化照明控制需要的非专有标准,是一种在两线网络上接口照明装置的通信协 议和方法。DALI 协议发送位为 19 bit,接收位为 11 bit,最多可支持 64 个镇流 器各自寻址,16 组群被播散到整个网络上。DALI 协议推出至今得到了广泛的关 注,欧洲的灯具制造厂商也全力支持该协议的开发与推广。



| DALI参数) | 8월 2011년 201 |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 参数设置    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2       | LA通道 CH 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 波形颜色    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 设置封包中每个栏位的颜色                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | Start 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | Address 📃 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | Stop 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 范围选择    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 选择要分析的范围                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ind.    | 起始位置 结束位置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 缓冲区开头 ▼ 缓冲区结尾 ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | ● 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

LA 通道:选择待测物接在逻辑分析仪的的通道编号。

极性:分 D-, D+, 自动三种格式。

**D-:** 接入端的信号极性为 D-。

**D+:** 接入端的信号极性为 D+。

自动: 自动侦测接入端的信号极性。



## 波形中显示刻度:在波形上面显示刻度。

## 分析结果

一般发送数据



#### 一般接收数据

| Time/Div: 1.2 m                                                                                                                                                                                                                         |                                                               |                                                                                                                                                                                              |          |        |                                                                                                                               |                 |                                                                                                                                                                                                                                                                                                                                           |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Acquired: 17:43:                                                                                                                                                                                                                        | 88.14<br>                                                     | 46 S 88.148 S                                                                                                                                                                                | 88.15 \$ | 8.1528 | 88.1548                                                                                                                       | 88.156 \$ 88.15 | 8S 88.16S                                                                                                                                                                                                                                                                                                                                 |            |
| DALI 0 DALI                                                                                                                                                                                                                             | Idle S                                                        | tart                                                                                                                                                                                         | Addr:01  |        |                                                                                                                               | Cmd:Query(90)   | Stop                                                                                                                                                                                                                                                                                                                                      |            |
| DALI                                                                                                                                                                                                                                    |                                                               |                                                                                                                                                                                              |          |        | ĿIJIJ                                                                                                                         | ·               |                                                                                                                                                                                                                                                                                                                                           | ·          |
|                                                                                                                                                                                                                                         |                                                               |                                                                                                                                                                                              |          |        |                                                                                                                               |                 |                                                                                                                                                                                                                                                                                                                                           |            |
|                                                                                                                                                                                                                                         |                                                               |                                                                                                                                                                                              |          |        |                                                                                                                               |                 |                                                                                                                                                                                                                                                                                                                                           |            |
|                                                                                                                                                                                                                                         |                                                               |                                                                                                                                                                                              |          |        |                                                                                                                               |                 |                                                                                                                                                                                                                                                                                                                                           | -          |
| Label Channel                                                                                                                                                                                                                           | •                                                             |                                                                                                                                                                                              |          |        |                                                                                                                               |                 |                                                                                                                                                                                                                                                                                                                                           | •          |
| CH-00 CH-00                                                                                                                                                                                                                             |                                                               |                                                                                                                                                                                              |          |        |                                                                                                                               |                 |                                                                                                                                                                                                                                                                                                                                           |            |
|                                                                                                                                                                                                                                         |                                                               | IDALI(DALI)                                                                                                                                                                                  | <b>T</b> |        |                                                                                                                               |                 |                                                                                                                                                                                                                                                                                                                                           |            |
|                                                                                                                                                                                                                                         |                                                               | DALI(DALI)                                                                                                                                                                                   | <b>•</b> |        | -                                                                                                                             |                 |                                                                                                                                                                                                                                                                                                                                           | _          |
| Timestamp                                                                                                                                                                                                                               | Address                                                       | [DALI(DALI)<br>Command                                                                                                                                                                       | <b>•</b> |        | Response                                                                                                                      | Information     | Frame Duration                                                                                                                                                                                                                                                                                                                            | _ <b>_</b> |
| Timestamp<br>88.4336 S                                                                                                                                                                                                                  | Address<br>01                                                 | DALI(DALI)<br>Command<br>Query(90)                                                                                                                                                           | <u> </u> |        | Response                                                                                                                      | Information     | Frame Duration                                                                                                                                                                                                                                                                                                                            | -          |
| Timestamp           88.4336         \$           88.4532         \$                                                                                                                                                                     | Address                                                       | DALI(DALI)<br>Command<br>Query (90)                                                                                                                                                          | <u> </u> |        | Response                                                                                                                      | Information     | Frame Duration<br>15.10 ms<br>8.30 ms                                                                                                                                                                                                                                                                                                     |            |
| Timestamp           88.4336         \$           88.4532         \$           88.7137         \$           98.7232         \$                                                                                                           | Address<br>01<br>01                                           | Command<br>Query(90)<br>Query(90)                                                                                                                                                            |          |        | Response                                                                                                                      | Information     | Frame Duration 15.10 ms<br>8.30 ms<br>15.10 ms<br>8.20 ms                                                                                                                                                                                                                                                                                 | •          |
| Timestamp           88.4336 S           88.4532 S           88.7137 S           88.7333 S           89.0528 S                                                                                                                           | Address<br>01<br>01                                           | Command<br>Query(90)<br>Query(90)                                                                                                                                                            |          |        | Response<br>04<br>04                                                                                                          | Information     | Frame Duration           15.10 ms           8.30 ms           15.10 ms           8.30 ms           15.00 ms                                                                                                                                                                                                                               |            |
| Timestamp           88.4336 \$           88.4532 \$           88.7137 \$           88.7333 \$           89.0578 \$           89.0573 \$                                                                                                 | Address 01 01 01 01                                           | DALI(DALI)<br>Command<br>Query(90)<br>Query(90)<br>Query(90)                                                                                                                                 |          |        | Response<br>04<br>04                                                                                                          | Information     | Frame Duration           15.10 ms           8.30 ms           15.10 ms           8.30 ms           15.00 ms           8.40 ms                                                                                                                                                                                                             |            |
| Timestamp           88.4336 \$           88.4532 \$           88.7137 \$           88.7333 \$           89.0578 \$           89.0773 \$           89.4257 \$                                                                            | Address<br>01<br>01<br>01<br>01                               | DALI(DALI)<br>Command<br>Query(90)<br>Query(90)<br>Query(90)                                                                                                                                 |          |        | Response<br>04<br>04<br>04                                                                                                    | Information     | Frame Duration           15.10 ms           8.30 ms           15.10 ms           8.30 ms           15.00 ms           8.40 ms           15.00 ms                                                                                                                                                                                          |            |
| Timestamp           88.4336 \$           88.4532 \$           88.7137 \$           88.7333 \$           89.0578 \$           89.4257 \$           89.4257 \$           89.4452 \$                                                       | Address<br>01<br>01<br>01<br>01<br>01                         | DALI(DALI)           Command           Query (90)           Query (90)           Query (90)           Query (90)                                                                             |          |        | Response<br>04<br>04<br>04<br>04                                                                                              | Information     | Frame Duration           15.10 ms           8.30 ms           15.10 ms           8.30 ms           15.00 ms           8.40 ms           15.00 ms           8.40 ms           15.00 ms                                                                                                                                                     |            |
| Timestamp           88.4336 \$           88.4332 \$           88.7137 \$           88.7137 \$           89.0578 \$           89.0773 \$           89.4257 \$           89.4452 \$           89.7618 \$                                  | Address<br>01<br>01<br>01<br>01<br>01<br>01<br>01             | DALI(DALI)           Command           Query (90)           Query (90)           Query (90)           Query (90)           Query (90)           Query (90)                                   |          |        | Response<br>04<br>04<br>04<br>04                                                                                              | Information     | Frame Duration           15.10 ms           8.30 ms           15.10 ms           8.30 ms           15.00 ms           8.40 ms           15.00 ms           8.40 ms           15.00 ms           15.00 ms           15.00 ms                                                                                                               |            |
| Timestamp           88.4336 \$           88.4532 \$           88.7137 \$           89.0578 \$           89.0578 \$           89.4257 \$           89.4452 \$           89.7618 \$           89.7614 \$                                  | Address O1                | DALI(DALI)           Command           Query (90)           Query (90)           Query (90)           Query (90)           Query (90)           Query (90)                                   |          |        | Response           04           04           04           04           04           04           04           04           04 | Information     | Frame Duration           15.10 ms           8.30 ms           15.10 ms           8.30 ms           15.00 ms           8.40 ms           15.00 ms           8.40 ms           15.10 ms           8.40 ms           15.00 ms           8.40 ms           15.10 ms           8.30 ms                                                         |            |
| Timestamp           88.4336 \$           88.4532 \$           88.7137 \$           88.7333 \$           89.0578 \$           89.4257 \$           89.4452 \$           89.7618 \$           89.7618 \$           90.0658 \$             | Address Address O1        | DALI(DALI)           Command           Query (90)              |          |        | Response           04           04           04           04           04           04           04           04              | Information     | Frame Duration           15.10 ms           8.30 ms           15.10 ms           8.30 ms           15.00 ms           8.40 ms           15.00 ms           8.40 ms           15.10 ms           8.30 ms           15.00 ms           8.40 ms           15.00 ms           8.40 ms           15.00 ms           8.30 ms           15.00 ms |            |
| Timestamp           88.4336 \$           88.4532 \$           88.7137 \$           88.7333 \$           89.0578 \$           89.4257 \$           89.4452 \$           89.7618 \$           89.7618 \$           90.0658 \$           4 | Address<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01 | DALI(DALI)           Command           Query(90)           Query(90)           Query(90)           Query(90)           Query(90)           Query(90)           Query(90)           Query(90) |          |        | Response           04           04           04           04           04           04           04           04              | Information     | Frame Duration           15.10 ms           8.30 ms           15.10 ms           8.30 ms           15.00 ms           8.40 ms           15.00 ms           8.40 ms           15.10 ms           8.30 ms           15.00 ms           8.40 ms           15.00 ms           8.30 ms           15.00 ms                                      |            |



# DMX512

由 USITT (美国剧院技术协会)发展为从控制台控制调光器。根据 EIA/TIA-485 标准来控制舞台灯具。

参数设置

| DMX512 参 | 教设置                                           |
|----------|-----------------------------------------------|
| 参数设 -    |                                               |
|          | ─通道设置<br>Data CH 0 ▼                          |
|          |                                               |
|          | 鮑率 250000                                     |
| 范围选择     |                                               |
| <b>S</b> | 选择要分析的范<br>起始位<br>缓冲区开头  ▼<br>结束位<br>缓冲区结尾  ▼ |
|          | 缺省 确定 取消                                      |

通道设置: Data: DMX512 数据

自动侦测鲍率:可选择是否自行设置鲍率。



| Time/Di                                                                                                                                                                  | .v: 19.                                                                           | 2 us                                           | •                                      |                                                  |                                                  |                                                  |                                                      |                                                                                                           |                                         |                                        |                            |                             |                             |                             |                             |                             |                             |                    |              |          | B    |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------|--------------|----------|------|----------|
| Acquire                                                                                                                                                                  | ed: 10:                                                                           | 24:48.                                         | 0<br>                                  | 4(                                               | 0.8 us                                           | 7                                                | 2.8 us                                               | 10                                                                                                        | 04.8 us                                 | 1                                      | 136.8 u                    | IS                          | 168                         | 8.8 us                      |                             | 200.8 u                     | 5                           | 232.8 us           |              | 264.8 us |      |          |
| DMX51                                                                                                                                                                    | 2 D                                                                               | Data                                           | Idle<br>80                             | Data                                             | 12                                               | .3u                                              | Datar<br>16u                                         | 8                                                                                                         |                                         | Data: E                                | BA<br>12                   | 3и 8                        | Da<br>3u 8u                 | ta: D3                      | l6.3u                       | 1                           | Data: A1                    | 12.3u              | Dal          | 28.3u    |      |          |
| Label                                                                                                                                                                    |                                                                                   | -<br>hannol                                    | •                                      | 1                                                | 1                                                |                                                  |                                                      |                                                                                                           |                                         |                                        |                            |                             |                             |                             |                             |                             |                             |                    |              |          |      |          |
|                                                                                                                                                                          |                                                                                   |                                                |                                        | · · · · · ·                                      |                                                  |                                                  |                                                      |                                                                                                           |                                         |                                        |                            |                             |                             |                             |                             |                             |                             |                    |              |          |      |          |
| Cottt                                                                                                                                                                    | CH-00 CH-00                                                                       | H-00                                           | -<br>and F                             |                                                  | DAMES                                            |                                                  | 10)                                                  |                                                                                                           |                                         |                                        |                            |                             |                             |                             |                             |                             |                             |                    |              |          |      |          |
| ©/111                                                                                                                                                                    | CH-00 C<br>CH-01 C                                                                | H-00                                           | n                                      | Bus                                              | DMX512                                           | 2(DMX5                                           | i12)                                                 | •                                                                                                         |                                         |                                        |                            |                             |                             |                             |                             |                             |                             |                    |              |          |      | l        |
| ©/111<br>S                                                                                                                                                               | CH-00<br>CH-01<br>State                                                           | H-00<br>H-00<br>D0                             | D1                                     | Bus D2                                           | DMX51;<br>D3                                     | 2(DMX5                                           | 512)<br>D5                                           | <b>•</b> D6                                                                                               | D7                                      | D8                                     | D9                         | D10                         | D11                         | D12                         | D13                         | D14                         | D15                         | Informa            | tion         |          | _    | <u> </u> |
| ©/Ⅲ<br>S<br>-6                                                                                                                                                           | CH-00<br>CH-01<br>State<br>Idle                                                   | D0                                             | D1                                     | D2                                               | DMX51;<br>D3                                     | 2(DMX5                                           | 512)<br>D5                                           | <b>•</b> D6                                                                                               | D7                                      | D8                                     | D9                         | D10                         | D11                         | D12                         | D13                         | D14                         | D15                         | Informa<br>Baud ra | tion<br>te = | 2500001  | ız - | -        |
| S<br>-6<br>-1514                                                                                                                                                         | CH-00<br>CH-01<br>State<br>Idle<br>Un                                             | H-00<br>H-00<br>D0                             | D1                                     | D2                                               | DMX51:                                           | 2(DMX5                                           | 512)<br>D5                                           | •<br>D6                                                                                                   | D7                                      | D8                                     | D9                         | D10                         | D11                         | D12                         | D13                         | D14                         | D15                         | Informa<br>Baud ra | tion<br>te = | 2500001  | Iz   |          |
| S<br>-6<br>-1514<br>0                                                                                                                                                    | State<br>Idle<br>Un<br>Idle                                                       | H-00<br>H-00<br>D0                             | D1                                     | D2                                               | DMX51;<br>D3                                     | 2(DMX5                                           | 512)<br>D5                                           | •<br>D6                                                                                                   | D7                                      | D8                                     | D9                         | D10                         | D11                         | D12                         | D13                         | D14                         | D15                         | Informa<br>Baud ra | tion<br>te = | 250000F  | IZ   | •        |
| S<br>-6<br>-1514<br>0<br>325                                                                                                                                             | State<br>Idle<br>Un<br>Idle<br>Data                                               | H-00<br>H-00<br>D0                             | D1                                     | Bus D2                                           | DMX51;<br>D3                                     | 2(DMX5                                           | 512)<br>D5                                           | •<br>D6                                                                                                   | D7                                      | D8<br>62                               | D9<br>EE                   | D10<br>EF                   | D11<br>A5                   | D12<br>FA                   | D13<br>BB                   | D14<br>B9                   | D15<br>A5                   | Informa<br>Baud ra | tion<br>te = | 250000F  | Iz   |          |
| S<br>-6<br>-1514<br>0<br>325<br>14411<br>23225                                                                                                                           | State<br>Idle<br>Un<br>Idle<br>Data<br>Data                                       | H-00<br>H-00<br>D0<br>AE<br>F8                 | D1<br>6F<br>C7                         | Bus D2<br>BA<br>21                               | DMX51:<br>D3<br>D3<br>64                         | 2(DMX5<br>D4<br>A1<br>56                         | 512)<br>D5<br>FB<br>97                               | •<br>D6<br>26<br>6B                                                                                       | D7<br>FB<br>E7                          | D8<br>62<br>48                         | D9<br>EE                   | D10<br>EF                   | D11<br>A5                   | D12<br>FA                   | D13<br>BB                   | D14<br>B9                   | D15<br>A5                   | Informa<br>Baud ra | tion<br>te = | 250000F  | IZ   |          |
| €3<br>-6<br>-1514<br>0<br>325<br>14411<br>22325<br>22391                                                                                                                 | State<br>Idle<br>Un<br>Idle<br>Data<br>Data<br>Idle                               | H-00<br>D0<br>AE<br>F8                         | D1<br>6F<br>C7                         | Bus D2<br>BA<br>21                               | DMX51;<br>D3<br>D3<br>B3<br>6A                   | 2(DMX5<br>D4<br>A1<br>56                         | 512)<br>D5<br>FB<br>97                               | ▼<br>D6<br>26<br>6B                                                                                       | D7<br>FB<br>E7                          | D8<br>62<br>48                         | D9<br>EE                   | D10<br>EF                   | D11<br>A5                   | D12<br>FA                   | D13<br>BB                   | D14<br>B9                   | D15                         | Informa<br>Baud ra | tion<br>te = | 250000F  | IZ   |          |
| S         -6           -1514         0           325         14411           22325         22391           23210         23210                                           | State<br>Idle<br>Un<br>Idle<br>Data<br>Data<br>Idle<br>Un<br>Data                 | H-00 J<br>D0 AE<br>F8                          | D1<br>6F<br>C7                         | Bus D2<br>D2<br>BA<br>21                         | DMX51:<br>D3<br>D3<br>CA                         | 2(DMX5<br>D4<br>A1<br>56                         | 512)<br>D5<br>FB<br>97                               | ▼ D6 26 68                                                                                                | D7<br>FB<br>E7                          | D8<br>62<br>48                         | D9<br>EE                   | D10<br>EF                   | D11<br>A5                   | D12<br>FA                   | D13<br>BB                   | D14<br>B9                   | D15                         | Informa<br>Baud ra | tion<br>te = | 250000F  | iz   |          |
| S           -6           -1514           0           325           14411           22325           22391           332201                                                | State<br>Idle<br>Un<br>Idle<br>Data<br>Idle<br>Un<br>Data<br>Data<br>Data         | H-00 J<br>D0 D0 AE<br>F8 03                    | D1<br>6F<br>C7<br>C3<br>F1             | Bus D2<br>D2<br>BA<br>21<br>F1                   | DMX51:<br>D3<br>D3<br>6X<br>B7<br>Ac             | 2(DMX5<br>D4<br>A1<br>56<br>9A                   | 512)<br>D5<br>FB<br>97<br>B9<br>7F                   | <ul> <li>▼</li> <li>D6</li> <li>26</li> <li>68</li> <li>58</li> <li>54</li> </ul>                         | D7<br>FB<br>E7<br>38<br>BB              | D8<br>62<br>40<br>90                   | D9<br>EE<br>2B             | D10<br>EF<br>93             | D11<br>A5<br>BA             | D12<br>FA                   | D13<br>BB<br>99             | D14<br>B9<br>40             | D15<br>A5<br>32             | Informa<br>Baud ra | tion<br>te = | 250000F  | Iz   |          |
| S<br>-6<br>-1514<br>0<br>325<br>14411<br>22325<br>22391<br>23210<br>37291<br>51371                                                                                       | State<br>Idle<br>Un<br>Idle<br>Data<br>Idle<br>Un<br>Data<br>Data<br>Data         | H-00 J<br>D0<br>AE<br>F8<br>03<br>4B<br>87     | 6F<br>C7<br>C3<br>F1<br>OC             | Bus D2<br>D2<br>BA<br>21<br>F1<br>F1             | DMX51:<br>D3<br>D3<br>6A<br>B7<br>46<br>61       | 2(DMX5<br>D4<br>A1<br>56<br>9A<br>40             | 512)<br>D5<br>FB<br>97<br>B9<br>7F<br>A9             | •<br>D6<br>26<br>66<br>54<br>E4<br>53                                                                     | D7<br>FB<br>E7<br>38<br>BB<br>35        | D8<br>62<br>46<br>90<br>30             | D9<br>EE<br>2B<br>4A       | D10<br>EF<br>93<br>96       | D11<br>A5<br>BA<br>44       | D12<br>FA<br>AB<br>15       | D13<br>BB<br>99<br>25<br>3D | D14<br>B9<br>4C<br>03       | D15<br>A5<br>32<br>D2       | Informa<br>Baud ra | tion<br>te = | 250000F  |      |          |
| S           -6           -1514           0           325           14411           22325           22391           23210           37291           51371           51371 | State<br>Idle<br>Un<br>Idle<br>Data<br>Data<br>Un<br>Data<br>Data<br>Data<br>Data | H-00<br>D0<br>AE<br>F8<br>03<br>4B<br>87<br>1D | 6F<br>C7<br>C3<br>F1<br>OC<br>23       | Bus D2<br>D2<br>BA<br>21<br>F1<br>59<br>F8       | DMX51:<br>D3<br>D3<br>64<br>B7<br>46<br>61<br>79 | 2(DMX5<br>D4<br>A1<br>56<br>9A<br>4C<br>0A<br>8F | 512)<br>D5<br>FB<br>97<br>FB<br>97<br>7F<br>A9<br>05 | ▼<br>D6<br>26<br>60<br>54<br>E4<br>53<br>48                                                               | D7<br>FB<br>E7<br>38<br>BB<br>35<br>33  | D8<br>62<br>48<br>90<br>30<br>48<br>DE | D9<br>EE<br>2B<br>4A<br>C2 | D10<br>EF<br>93<br>96<br>1E | D11<br>A5<br>BA<br>44<br>8E | D12<br>FA<br>AB<br>15<br>11 | D13<br>BB<br>99<br>25<br>3D | D14<br>B9<br>40<br>03<br>10 | D15<br>A5<br>32<br>D2<br>87 | Informa<br>Baud ra | tion<br>te = | 250000F  |      |          |
| S           -6           -1514           0           325           14411           22325           22391           23210           37291           51371           65450 | State<br>Idle<br>Un<br>Idle<br>Data<br>Idle<br>Un<br>Data<br>Data<br>Data<br>Data | AE<br>F8<br>03<br>48<br>87<br>1D               | D1<br>6F<br>C7<br>C3<br>F1<br>0C<br>23 | Bus D2<br>D2<br>BA<br>21<br>F1<br>50<br>F8<br>40 | DMX51:<br>D3<br>04<br>87<br>46<br>01<br>79       | 2(DMXE<br>D4<br>A1<br>56<br>9A<br>4C<br>OA<br>8F | 512)<br>D5<br>FB<br>97<br>B9<br>7F<br>A9<br>05       | ▼<br>D6<br>26<br>68<br>54<br>54<br>53<br>48                                                               | D7<br>FB<br>E7<br>38<br>BB<br>35<br>83  | D8<br>62<br>4B<br>9C<br>3D<br>4B<br>DE | D9<br>EE<br>2B<br>4A<br>C2 | D10<br>EF<br>93<br>96<br>1E | D11<br>A5<br>BA<br>44<br>8E | D12<br>FA<br>AB<br>15<br>11 | D13<br>BB<br>99<br>25<br>3D | D14<br>B9<br>40<br>03<br>10 | D15<br>A5<br>32<br>D2<br>87 | Informa<br>Baud ra | tion<br>te = | 250000   |      |          |
| C)∰<br>S<br>-6<br>-1514<br>0<br>325<br>14411<br>22325<br>22391<br>23210<br>37291<br>51371<br>65450<br>◀                                                                  | State<br>Idle<br>Un<br>Idle<br>Data<br>Data<br>Data<br>Data<br>Data<br>Data       | AE<br>F8<br>03<br>410<br>87<br>10              | D1<br>6F<br>C7<br>C3<br>F1<br>0C<br>23 | Bus D2<br>D2<br>BA<br>21<br>F1<br>90<br>F8<br>40 | DMX51:<br>D3<br>04<br>87<br>46<br>01<br>79       | 2(DMX5<br>D4<br>A1<br>56<br>9A<br>4C<br>0A<br>8F | 512)<br>D5<br>FB<br>97<br>89<br>7F<br>A9<br>05       | <ul> <li>▼</li> <li>D6</li> <li>26</li> <li>65</li> <li>5A</li> <li>E4</li> <li>53</li> <li>48</li> </ul> | <b>FB</b><br>E7<br>30<br>BB<br>35<br>83 | D8<br>62<br>48<br>90<br>30<br>48<br>DE | D9<br>EE<br>2B<br>4A<br>C2 | D10<br>EF<br>93<br>96<br>1E | D11<br>A5<br>BA<br>44<br>8E | D12<br>FA<br>AB<br>15<br>11 | D13<br>BB<br>99<br>25<br>3D | D14<br>B9<br>40<br>03<br>10 | D15<br>A5<br>32<br>D2<br>87 | Informa<br>Baud ra | tion<br>te = | 250000   |      |          |

报告区的结果以灰阶显示,数值越大灰阶颜色越浅。



# DP Aux Ch

DP AUX CH (DisplayPort Auxiliary Channel) DisplayPort 为数字视讯接口的标准, 而 Auxiliary Channel 则是辅助的通道,用来管理连结、组态和状态。有半双工以 及双向传输的特性。

## 参数设置

| DP AUX CH  | ↓参数设置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | × |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 参数设置       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|            | 通道设置<br>Data CH 0 🚽 🔲 Show DPCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 波形颜色       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|            | 设置数据的颜色                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|            | RequestImage: Constraint of the sector of the s |   |
| 范围选择       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| <u>1-1</u> | 起始位置    结束位置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|            | 缺省 确定 取消                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |

Data: AUX CH 数据

Show DPCD: 勾选后显示 DisplayPort Configuration Data 信息

## 分析结果

不显示 DPCD:



| Time/Div: 2 | 2 us 📮     |                            |           |      |                                  |                       |
|-------------|------------|----------------------------|-----------|------|----------------------------------|-----------------------|
| Acquired: 1 | 17:11:54.0 | 114.685 us 117.885 u       | ıs 121.08 | 5 us | 124.285 us 127.485 us 130.685 us | 133.885 us 137.085 us |
| DP_AUX      | 0 DP AuxCh | SYNC: Reply CMD: I2C ACK(0 | ) Add     | r) 0 | DATA: 41                         | DATA: 00              |
| DP_AuxCh    |            | 2.595u                     |           |      | 1.04u                            |                       |
| Label       | Channel 🧾  |                            |           |      |                                  |                       |
| CH-00       | CH-00 RR   | Bus DP_AUX(DP_AuxCh)       | -         |      |                                  |                       |
| Sample      | SYNC       | Command                    | Address   | Len  | Data                             | Information 🔺         |
| 0           | Request    | DisplayPort Read(9)        | 00200     | 06   |                                  |                       |
| 15965       | Reply      | I2C ACK(0)                 | 0         |      | 41 00 00 00 80 00                |                       |
| 1593671     | Request    | DisplayPort Read(9)        | 00000     | 01   |                                  |                       |
| 1609651     | Reply      | I2C ACK(0)                 | 0         |      | 11                               |                       |
| 2375036     | Request    | DisplayPort Read(9)        | 00001     | 01   |                                  |                       |
| 2390938     | Reply      | I2C ACK(0)                 | 0         |      | OA                               |                       |
| 3156298     | Request    | DisplayPort Read(9)        | 00002     | 01   |                                  |                       |
| 3172225     | Reply      | I2C ACK(0)                 | 0         |      |                                  |                       |
| 3937863     | Request    | DisplayPort Read(9)        | 00003     | 01   |                                  |                       |
| 3953720     | Reply      | I2C ACK(0)                 | 0         |      | 00                               |                       |
| 4719035     | Request    | DisplayPort Read(9)        | 00004     | 01   |                                  |                       |
| •           |            |                            |           |      |                                  | <u>)</u>              |
|             |            |                            |           |      | A 77.88 us Β 76.975 ι            | ıs 🔒 -905 ns 🕒 🕅      |

## 显示 DPCD:





## eSPI

eSPI 为 Intel 新世代主板所使用的传输协议,旨在整合现有的 SMBus/LPC/ SPI Flash 接口,以提高传输效率与精简总线线数之协议。数据源根据 Enhanced Serial Peripheral Interface (eSPI) Interface Base Specification (for Client and Server Platforms) June 2013, Revision 0.75.

## eSPI 参数设置

| Enhanced                         | SPI (eSPI)                              | 参数设置                                                |         |                                |                                   |                                                                     | ×                             |
|----------------------------------|-----------------------------------------|-----------------------------------------------------|---------|--------------------------------|-----------------------------------|---------------------------------------------------------------------|-------------------------------|
| 通道设置<br>::♪                      | CS#<br>I/O 0<br>I/O 2<br>Alert<br>一初始设置 | Ch 0                                                |         | SCK<br>I/O 1<br>I/O 3<br>□ 启用毛 | Ch 1 ÷<br>Ch 3 ÷<br>Ch 5 ÷<br>刺过滤 | 解码显示设置<br>显示 Configu<br>显示 Status<br>Reduced Rep<br>Default Display | aration 内容<br>内容<br>wort<br>▼ |
|                                  | Alert I<br>Command o<br>Clock LOW       | Mode 设盘<br>Mode 设置<br>deselect time<br>to output va | Quad Mo | 0[1]                           | 50ns<br>15ns                      | PUT_PC<br>PUT_PC<br>PUT_PC                                          | ×<br>×<br>×                   |
| 波形颜色<br>① <sup>Of</sup><br>Cycle | pCode                                   |                                                     |         | -<br>-                         | Address<br>Data                   |                                                                     | <b>•</b>                      |
|                                  | Tag C                                   |                                                     |         |                                | Response<br>Status                |                                                                     |                               |
| 分析范围                             | 选择要分4<br>起始位<br><mark>?????</mark>      | 断的范围<br>2置                                          | •       | 结束位置<br>????Ю                  | -<br>-                            | 4                                                                   |                               |
|                                  |                                         |                                                     |         |                                | 缺省                                | 确定                                                                  | 取消                            |

通道设定

- CS#: Chip Select (Active Low)
- SCK: Clock
- I/O0 I/O3: Data 输入/输出脚位
- Alert: Alert 信号 (Optional)

初始设置

I/O Mode 设置:设置波形前段的 I/O 状态为 Single / Dual / Quad,之后分析 功能将会自动随着波形内容自动切换 I/O 状态。



Alert Mode 设置: 设置波形前段的 Alert 讯号是来自 I/O1 或是 Alert。

Command deselect time: 设置 tSHSL, Chip Select# Deassertion Time。

Clock LOW to output valid: 设置 tCLQV, Output Data Valid Time。

## 解碼显示设置

显示 Configure 内容:进一步解析 SET\_CONFIG/GET\_CONFIG 内容。

显示 Status 内容:进一步解析 Status 的内容。

Reduced Report: 缩减数据内容, 方便检视 Command Flow。

Filter 设置: 针对特定的 OPCode/Cycle Type 或是 Address 范围选择显示或不

显示报告。

注: Address Filter 设置存于工作目录下的 LA\eSPI\eSPIFilterX.bin

## 波形颜色

可设定 Frame 内每个 Field 之标记颜色。

## 分析范围

选择分析的范围,从起始位置到结束位置之间作分析。

| ile Label Wave                                | orm <u>V</u> iew <u>D</u> evice <u>T</u> ools <u>H</u> elp                             |                |         |        |       |        |      |       |          |           |              |                |
|-----------------------------------------------|----------------------------------------------------------------------------------------|----------------|---------|--------|-------|--------|------|-------|----------|-----------|--------------|----------------|
| 2 🛠 📴 💾 🚍 1                                   | 👌 🏟 😰 💿 💿 🚱 🥰 🕿 👂 🔎 🖳 🕂 🕀 🦛 🌚 🕄                                                        |                | 9.      | -      | 1     | 0      | 1    | S/R   | 200      | MHz       |              |                |
| ma/Dive 125 na                                |                                                                                        |                |         |        |       | -      |      |       |          |           |              | 13             |
| me/ DIV. 123 113                              | 1 -400 pt -200 pt - 400 pt                                                             | 600.01         | 800     | 101    |       | 7.000  |      |       | 1 2      |           | 14.00        | 1.51           |
| quireu: 10:20:02.                             |                                                                                        |                |         | 1.1.   | 1.1   | . 1    |      | 1     |          | 1.1       |              |                |
|                                               | THE GET CONFIGURATION(21) ADDR (00)                                                    | ADDR (1        | 0)      |        |       |        | (9)  |       | -        |           | (88)         | REED (08)      |
| 0.05                                          |                                                                                        | HODIT (S       |         |        |       | are ta | ~/   |       | <u>۸</u> | - Order ( | (007 A       | 1000           |
|                                               |                                                                                        |                |         |        |       |        |      |       |          | 1         | 1            | 1              |
| 1 SC                                          | 85 ns 80 ns 85 ns 85 ns 85 ns 85 ns 85 ns 85 ns 80 ns                                  | 85 ns 85 ns 85 | ns 85 r | 15 85  | ns 80 | ns 8   | S ns | 85 ns | 85 ns    | 85 n      | s 85 ns 8    | Sins 85 ns     |
| eSpi 2 SI/                                    | 00 165 ns 170 ns 165 ns 335 ns 170                                                     | ns 120 ns      |         | 170 05 | -i-   |        |      |       |          |           |              |                |
| 2.50                                          |                                                                                        |                |         |        | -     |        |      |       |          |           | _            |                |
| 5 50/                                         | 1/0 hs                                                                                 |                | _       |        |       |        |      |       |          | _         |              |                |
| 4 WP                                          | \$02 1.175 us                                                                          |                |         | 170 ns |       |        |      |       |          |           |              |                |
| 5 Hol                                         | #/SO3 165 ns 1.175 us                                                                  |                |         |        |       |        |      | 51    | 5 ns     |           |              | 170 ns         |
| #SP1                                          |                                                                                        | 1 1            | 1       |        |       |        |      |       |          |           | -            |                |
| Label Char                                    | nel 1                                                                                  |                |         |        |       |        |      |       |          |           |              | ,              |
|                                               |                                                                                        |                |         |        |       |        |      |       |          |           |              |                |
| CH-00 CH-00                                   | Bus( eSpi(eSPI)                                                                        |                |         |        |       |        |      |       |          |           |              |                |
| OpCode/Response                               | CvcTvpe                                                                                | Address        | DO      | D1     | D2    | D3     | D4   | DS    | D6       | D7        | Status       | CRC            |
| GET CONFIGURATION                             | 1                                                                                      | 0010           |         |        |       |        |      | -     |          | -         |              | 58             |
| ACCEPT (08)                                   |                                                                                        |                | 13      | 11     | 00    | 00     | i -  |       |          |           | 030F         | 95             |
|                                               | Channel 0 Capabilities and Configurations                                              |                |         |        |       |        | -    |       |          |           |              | 1.4            |
|                                               | Peripheral Channel Maximum Read Request Size = 64 bytes(1                              | N              |         |        |       |        |      |       |          |           |              |                |
|                                               | Peripheral Channel Maximum Payload Size Selected = 64 byt                              | 25 (1          |         |        |       |        |      |       |          |           |              |                |
|                                               | Peripheral Channel Maximum Payload Size Supported = 64 by                              | tesi           |         |        |       |        |      |       |          |           |              |                |
|                                               | Bus Master Enable = 0                                                                  |                |         |        |       |        |      |       |          |           |              |                |
|                                               | Peripheral Channel Ready = 1                                                           |                |         |        |       |        |      |       |          |           |              |                |
|                                               | Peripheral Channel Enable = 1                                                          |                |         |        |       |        | -    |       |          |           |              |                |
| SET_CONFIGURATION                             | Changel & Comphiliping and Configurations                                              | 0010           | 01      | 11     | 00    | 00     | ų    |       |          |           |              | 10             |
|                                               | Perinheral Channel Maximum Read Request Size = 64 hutes(1                              |                |         |        |       |        |      |       |          |           |              |                |
|                                               | Peripheral Channel Maximum Pavload Size Selected = 64 bytes(1                          | 311            |         |        |       |        |      |       |          |           |              |                |
|                                               | tolege and the second - of pla                                                         |                |         |        |       |        |      |       |          |           |              |                |
|                                               | Bus Master Enable = 0                                                                  |                |         |        |       |        |      |       |          |           |              |                |
|                                               | Bus Master Enable = 0<br>Peripheral Channel Ready = 0                                  |                |         |        |       |        |      |       |          |           |              |                |
|                                               | Bus Master Enable = 0<br>Peripheral Channel Ready = 0<br>Peripheral Channel Enable = 1 |                |         |        |       |        |      |       |          |           |              |                |
| ACCEPT (08)                                   | Bus Master Enable = 0<br>Peripheral Channel Ready = 0<br>Peripheral Channel Enable = 1 | _              |         |        |       |        |      |       |          |           | 030F         | 98             |
| ACCEPT (08)<br>GET_STATUS (25)                | Bus Master Enable = 0<br>Peripheral Channel Ready = 0<br>Peripheral Channel Enable = 1 |                |         |        |       |        |      |       |          |           | 030F         | 9B<br>FB       |
| ACCEPT (08)<br>GET_STATUS (25)<br>ACCEPT (08) | Bus Master Enable = 0<br>Peripheral Channel Ready = 0<br>Peripheral Channel Enable = 1 |                |         |        |       |        |      |       |          |           | 030F<br>030F | 98<br>FB<br>98 |



## FlexRay

FlexRay 为车载网络标准,支持两个通道,每个通道的速度达到 10Mbps。 **物理层(Physical Layer)测量:** FlexRay Physical Layer 是差分信号(Differential signal)。信号在传送时,电压是会飘动的,若电压准位不固定,就无法直接使用 逻辑分析仪来测量物理层。必须搭配示波器才有办法处理测量差分信号。如下图 所示 FlexRay 实际信号电压飘动的情形,红色圆圈处,是有效的数据。



示波器处理 FlexRay 差分信号时,是将两个信号相减后,才开始进行处理.这样就不受电压飘动之影响,如下图所示,黄色为 BP,蓝色为 BM,红色是 BP-BM 后的信号.



因此,进行物理层测量时,您只需要将 LA 与示波器叠加起来,并设置 LA1 个通道连接到 BP or BM,作为触发之用,就可以完成叠加。设置时留意 BP 及 BM



所接之示波器通道,如下图所示。



通讯(逻辑)层(Communication Data) 测量



## 参数设置





通道设置:缺省值为 Physical Layer。

Physical Layer: 物理层信号测量,信号来自叠加示波器,测量 FlexRay 信号 BP, BM。可设置的 DSO 通道范围为 1-6。

Communication Data (TxD):通讯(逻辑)层信号测量,信号来源来自逻辑分析仪,

测量 FlexRay transceiver 之 TxD 及 TxEN 信号。

Communication Data (RxD):通讯(逻辑)层信号测量,信号来源来自逻辑分析仪,

测量 FlexRay transceiver 之 RxD 或包含 RxEN 信号。

自动侦测 Data Rate: 缺省值为自动侦测 Data Rate。打勾的时候,由程序协助侦

测 Data Rate 若没打勾时,使用者可以选择内建的 Data Rate 10/5/2.5 Mbps,或自

行输入 Data Rate。允许的 Data Rate 范围为 1Mbps-20Mbps。

FlexRay Channel: 使用者可以指定 FlexRay Channel 为 Channel A 或 B,主要

作为 Frame CRC 检查之用。

分析程序会显示错误信息如下

| 错误信息             | 描述                                |
|------------------|-----------------------------------|
| TSS Error        | Unable to detect TSS              |
| FSS Error        | Unable to detect FSS              |
| BSS Error        | Unable to detect BSS              |
| FES Error        | Unable to detect FES              |
| Header CRC Error | The header CRC value is incorrect |
| Frame CRC Error  | The frame CRC value is incorrect  |

缩写字表示之意义

| 缩写  | 描述                          |
|-----|-----------------------------|
| TSS | Transmission start sequence |
| FSS | Frame start sequence        |
| BSS | Byte start sequence         |
| FES | Frame end sequence          |
| DTS | Dynamic trailing sequence   |
| CAS | Collision Avoidance Symbol  |
| MTS | Media Access Test Symbol    |
| WUP | Wakeup Pattern              |
| CID | Channel Idle Delimiter      |



## 分析结果

| Time/Div: | : 240 ns  | <b>U</b> |           |                               |             |       |     |      |       |    |      |       |       |        |       |             |                         |
|-----------|-----------|----------|-----------|-------------------------------|-------------|-------|-----|------|-------|----|------|-------|-------|--------|-------|-------------|-------------------------|
| Acquired: | : 08:00:  | . , 0.00 | -8.78 ι   | is -8                         | .38 us      | -7.9  | Bus |      | -7.58 | us |      | -7.18 | sus . | -6.78  | us    | -6.38 us    | -5.98 us                |
| FlexRay D | ecode (   | ) RxD    | TSS       | F <mark>55</mark> B55<br>200n | R:0 P:0 N:1 | C:1 S |     | 300n |       | 1  | F    | ID:1  | 800n  |        | 200   | BSS Pa      | 19 <mark>Len: 16</mark> |
| Label     |           | Channe   |           |                               |             |       |     |      |       |    |      |       |       |        |       |             | <b>•</b>                |
|           | -00 CH-00 | กก 🗴     | us FlexRa | ay Decode(                    | FlexRa 🔻    |       |     |      |       |    |      |       |       |        |       |             |                         |
| Sample    | RPNCS     | Frame Id | Pay Len   | HCRC(h)                       | Cyc Cnt     | DO    | Dl  | D2   | D3    | D4 | D5   | D6    | D7    | CRC(h) | DTS   | ASCII(DO-D7 | ) Informat 📥            |
| -238953   |           |          |           |                               |             | 00    | 00  | 00   | 00    | 00 | 00   | 00    | 00    | 9F9E3A |       |             |                         |
| -420      | 00111     | 1        | 16        | 0F2                           | 28          | 00    | 21  | 00   | FO    | 00 | 22   | 00    | 14    |        |       | .!"         |                         |
| 230       |           |          |           |                               |             | FE    | 00  | 00   | 00    | 00 | 00   | 00    | 0B    |        |       |             |                         |
| 630       |           |          |           |                               |             | 00    | 0B  | 00   | 00    | 00 | 00   | 00    | 28    |        |       | (           |                         |
| 1030      |           |          |           |                               |             | 00    | 00  | 00   | 00    | OD | DC   | 00    | 27    | B4A469 |       | '           |                         |
| 7082      | 00111     | 4        | 16        | 6D3                           | 28          | FU    | 18  | 00   | 00    | 00 | 00   | 00    | 00    |        |       |             |                         |
| 7732      |           |          |           |                               |             | 00    | 00  | 00   | 00    | 00 | 00   | 00    | 00    |        |       |             |                         |
| 8532      |           |          |           |                               |             | 00    | 00  | 00   | 00    | 00 | 00   | 00    | 00    | 183000 |       |             |                         |
| 9582      | 00100     | 5        | 16        | 005                           | 28          | 00    | 2C  | 00   | 00    | 00 | FO   | 00    | 00    | AUJUDU |       | т.          |                         |
| 10232     | 00100     | с<br>- С | 10        | 000                           | 20          | 00    | 1E  | 00   | 00    | 00 | 00   | 00    | 00    |        |       |             |                         |
| 10632     |           |          |           |                               |             | 00    | 00  | 00   | 00    | 00 | 00   | 00    | 00    |        |       |             |                         |
| 11032     |           |          |           |                               |             | 00    | 00  | 00   | 00    | 00 | 00   | 00    | 00    | 4BE2A6 |       |             | -                       |
| •         |           |          |           |                               |             |       |     |      |       |    |      |       |       |        |       |             |                         |
|           |           |          |           |                               |             |       |     |      |       | -3 | 3.81 | 2 ms  | B     | -3.8   | 12 ms | A<br>B      | 180 ns 🕒 🖽              |

# 高速 FlexRay Communication Data 信号(RxD), 10Mbps



# HD Audio

HD Audio(Intel High Definition Audio) 是 Intel 于 2004 年提出的音效技术,使 音效处理做法比 AC97 更先进

## 参数设置

| HD Audio       | ) 参数设置                     |       |            |           |       | ×               |
|----------------|----------------------------|-------|------------|-----------|-------|-----------------|
| 通道设置           | <u> </u>                   |       |            |           |       |                 |
| : SY           | NC CHO                     | I/0 0 | СН 3       |           | j     |                 |
| вс             | ак был                     | -8    | ·          | · ·       | SDI O | SDO             |
|                | pir 1                      |       |            |           |       |                 |
| 波形颜色           | 5                          |       |            |           |       |                 |
| St             | tream Data<br>Preamble     |       |            | Stream ID |       |                 |
|                | Length                     |       |            | ample     |       |                 |
|                | esponse (SDI) –            |       |            | · ]L      |       |                 |
|                | Valid                      |       | . ·        | JnSol     |       | <u> </u>        |
|                | Reserved                   |       | <b>•</b> F | Response  |       |                 |
| L <sub>C</sub> | ommand (SDO) ·<br>Reserved |       |            | ad 🔽      |       |                 |
|                | NID                        |       |            | /erb ID   |       |                 |
|                | Payload                    |       |            |           |       |                 |
|                |                            | J     |            |           |       |                 |
| 分析范围           |                            | +8    |            |           |       |                 |
|                | 选择要分析的》<br>耙始位署            | 自国    | 東位署        |           |       |                 |
|                | 缓冲区开头                      | •     | 缓冲区结尾      | •         |       |                 |
|                |                            | ,     | 4五 2台      |           | 1 1   | <del>л</del> ан |
|                |                            |       | 47718      | <u> </u>  |       | 10.03           |

通道设置: 通道可区分为 SYNC, BCLK, I/O。

方向:决定 I/O 数据译码是 SDI 或 SDO。此选择会影响分析之规则,会使下方 栏位颜色标记选项随之改变。



| Time/Div: 6)<br>Acquired: 03 | ) ns 🔋     |         | 56.575 us | 166.675 u | s 166.775 | us 166.8   | 75 us 166. | .975 us          | : 167.075 us  | 167.175 | us :  | 167.275 | us       |
|------------------------------|------------|---------|-----------|-----------|-----------|------------|------------|------------------|---------------|---------|-------|---------|----------|
|                              | Sa         | mple:00 | Frame     | Sync:FF   | Valid: 1  | Reserved:0 |            |                  | Response:0000 | 0000    |       |         |          |
|                              | 1 SYNC     |         | 165       | n         |           |            |            |                  |               |         |       |         |          |
| SDI_Bus                      | о всі к    |         |           |           |           |            |            |                  |               |         | ΤĖ    |         |          |
|                              |            |         |           |           |           |            |            | _ L              |               |         |       |         |          |
| но                           | 2 SDI      |         |           |           | 40n       |            |            |                  |               |         |       |         |          |
|                              | s          | mple:00 | France    | Sync:FP   | Reserv    | ed:00      | CAd:0      |                  | NID:00        |         | VID:0 |         |          |
|                              | 1 SYNC     | i i     | 155       | n         |           |            |            |                  |               |         |       |         |          |
| SDO_Bus                      |            |         | ┍┑╞       |           |           |            |            | Ħ                |               |         |       |         |          |
|                              | O BCLK     |         |           |           |           |            |            |                  |               |         |       |         |          |
| но                           | 3 SDO      |         |           |           |           |            |            |                  |               |         |       |         | -        |
| Label                        | Channel    |         |           |           |           |            |            |                  |               |         |       |         | •        |
| ⊙/ <b>Ⅲ</b> CH-00<br>CH-01   | Сн-00      | Bus S   | DI_Bus(H  | HD Audio) | -         |            |            |                  |               |         |       |         |          |
| Sample                       | Frame Sync | Valid   | Unsol     | Reserved  | Respone   | Stream     | Tag Leng   | th               | Sample        |         |       |         | <b>▲</b> |
| 32757                        |            |         |           |           |           |            |            |                  | 00 00 00 00 0 | 0 00 00 | 00    |         |          |
| 33307                        | FF         | 1       | 0         | 0         | 00000000  | 0          | 00         |                  | 00 00 00 00 0 | 0 00 00 | 00 00 | 00 00   | 00       |
| 34790                        |            |         |           |           |           |            |            |                  | 00 00 00 00 0 | 0 00 00 | 00 00 | 00 00   | 00       |
| 35857                        |            |         |           |           |           |            |            |                  | 00 00 00 00 0 | 0 00 00 | 00 00 | 00 00   | 00       |
| 36924                        |            | _       | -         |           |           |            |            |                  | 00 00 00 00 0 | 0 00 00 | 00    |         |          |
| 37474                        | FF         | U       | U         | 0         | 00000000  | 0          | 00         |                  | 00 00 00 00 0 | 0 00 00 | 00 00 | 00 00   | 00       |
| 38957                        | -          |         |           |           |           |            |            |                  | 00 00 00 00 0 | U UU UO | 00 00 | 00 00   | 00       |
| •                            |            |         |           |           |           |            |            |                  |               |         |       |         |          |
|                              |            |         |           |           |           | A          | 28.265 us  | 5 <mark>8</mark> | 38.04 us      | A<br>B  | 9.775 | i us Ċ  | JJ] ^^^^ |



# HDMI-CEC

HDMI:高清晰度多媒体接口(英文:High Definition Multimedia Interface,简称 HDMI)是一种全数字化影像和声音传送接口,可以传送无压缩的音频信号及视频 信号。HDMI可用于机顶盒、DVD 播放机、个人电脑、电视游乐器、综合扩大 机、数字音响与电视机。HDMI 可以同时传送音频和影音信号,由于音频和视频 信号采用同一条电缆,大大简化了系统的安装。

CEC: 全文为 Consumer Electronics Control,用来传送工业规格的 AV Link 协议 信号,以便支持单一遥控器操作多台 AV 机器,为单芯线双向串行总线,在 HDMI 1.0 协议中制订,在 1.2a 版中更新。

#### 参数设置

| HDMI-CEC | :参数设置 🗙 🗙                |
|----------|--------------------------|
| 通道设置     | - 报告格式                   |
| 波型颜色     | 设置HDMI-CEC在LA中的通道 CH 0   |
|          | 设置数据的颜色                  |
|          | Header Block             |
|          | Data Block               |
|          | EOM Bit                  |
|          | ACK Bit                  |
|          |                          |
| 范围选择     | 选择要分析的范围<br>起始位置    结束位置 |
|          | 缺省 确定 取消                 |

通道设置:设置待测物上,HDMI-CEC 接在逻辑分析仪的通道编号。



## 采样位置:一般是在1.05ms,使用者可自订。





# HDMI-DDC(EDID)

EDID(Extended Display Identification Data)是建立于 DDC 线路上以 I2C 传输的通 讯协议,位于 Address 0xA0/0xA1,用来传递显示器数据以及支持的显示规格, 目前在 HDMI、DVI 以及 VGA 的接头中都已支持此种传输架构。

## 参数设置

| DDC(E | DID)参数设置                                                                 |
|-------|--------------------------------------------------------------------------|
| 参数3   | 役置<br>通道设置<br>SCL Ch 0 ♀ SDA Ch 1 ♀                                      |
|       | 位址设置<br>⑦ 7-Bit Addressing<br>⑥ 7-Bit Addressing(Include R/W in address) |
| 计扩展   | □ 忽略毛刺 □ 统计模式                                                            |
| 波形网   |                                                                          |
|       | Start Read/Write                                                         |
|       | Stop 🔽 ACK 🔽 🗸                                                           |
|       | Address NACK                                                             |
|       | Data 🗾 👻                                                                 |
| 分析范   | 克围                                                                       |
| -     | 选择要分析的范围                                                                 |
| F     | <ul> <li>起始位置 结束位置</li> <li>缓冲区开头 ▼ 缓冲区开头 ▼</li> </ul>                   |
|       | 缺省 确定 取消                                                                 |

- SCL: I<sup>2</sup>C 数据传输之 Clock
- SDA: I<sup>2</sup>C 数据传输之 Data



**7-bit addressing:**显示7位宽度的地址和1位宽度的Rd/Wr

7-bit addressing(Include R/W in Address):显示8位宽度地址(7位宽度地址加上

1 位 Rd/Wr)

忽略毛刺:分析时忽略因跳变存储过缓造成的毛刺

統計模式:分析后将资料归纳为一个完整资料列表

| Time/Div: 32 us         | <b>9</b>   |                     |                             |                          |              |
|-------------------------|------------|---------------------|-----------------------------|--------------------------|--------------|
| Acquired: 18:07:3       | 8.0        | 10.018 \$ 10.018 \$ | 10.018\$ 10.018\$ 10.018\$  | 10.018 \$ 10.            | 0185 10.0185 |
|                         |            | s wrz4              |                             | S Rd:75                  |              |
| Label Chann             | nel 💶      | 35,15u 34,1         | 106.78u                     | 32.66u                   | 23.070 25.80 |
| CH-00 CH-00 CH-00 CH-00 |            | DDC(DDC(EDID))      | ]                           |                          |              |
| Sample                  | Address(h) | Offset(h)           | EDID Register Name          | EDID Data                | ▲            |
| 1603521947              | 74(HDCP)   |                     |                             |                          |              |
| 2003597004              | 74(HDCP)   |                     | HDCP Offset = 00h           |                          |              |
| 2003665359              | 75(HDCP)   | 0x00                | HDCP Receiver KSV(Bksv, Rd) | 4F C6 AC B3 A0h          |              |
| 2003802225              | 74(HDCP)   |                     | HDCP Offset = 40h           |                          |              |
| 2003870336              | 75(HDCP)   | 0x40                | Bcaps(Rd)                   |                          |              |
| 2003870336              |            |                     | HDMI_RESERVED               | 1                        |              |
| 2003870336              |            |                     | HDCP Repeater capability    | 0                        |              |
| 2003870336              |            |                     | KSV FIFO ready              | 0                        |              |
| 2003870336              |            |                     | FAST                        | 1                        |              |
| 2003870336              |            |                     | Reserved, 2Bits             | 0                        |              |
| 2003870336              |            |                     | 1.1_FEATURES                | 0                        |              |
| 2003870336              |            |                     | FAST_REAUTHENTICATION       | 1                        |              |
| 2003920949              | 76 (HDCP)  |                     |                             |                          |              |
| 2303314520              | Al(EDID)   | Current Addr Read   |                             | FFh                      |              |
| 2303472867              | Al(EDID)   | Current Addr Read   |                             | FFh                      | •            |
|                         |            |                     |                             |                          |              |
|                         |            |                     | -10.648 S 📕                 | -10.648 S <mark>B</mark> | o 🕒 🗐        |



# HDLC

HDLC(High-level Data Link Control)用于 Data Link Layer 之中也是 Cisco 设备默认使用的封装协议。

## 参数设置

| HDLC 参数设置                                                    | ×                                                     |
|--------------------------------------------------------------|-------------------------------------------------------|
| 参数设置<br>HDLC CH 0 :<br>Mode Synchronous マ<br>Bit rate Auto マ | 波形顏色<br>Flag<br>Addr<br>Control<br>Information<br>FCS |
| 范围选择<br>选择要分析的范围<br>起始位置  缓冲区开头    ▼                         | 「结束位置」 「缓冲区结尾」                                        |
| í                                                            | 缺省 确定 取消                                              |

HDLC: 设置信号通道

Mode: Sync / Async,同步及异步模式

**Bit rate:** 信号速度







# HDQ

由德州仪器(TEXAS INSTRUMENTS)所制定,使用于电池管理的显示应用,主要是运用在消费性电子产品方面。HDQ 分为 8 位与 16 位两种数据宽度格式,地址固定为 7 位。一个 HDQ 的封包主要由 Break、7 bits Address、1 bit R/W 和 8 bits Data 或是 16 bits Data 所组成。传输的方式为 LSB(Least-significant bit)到 MSB(Most-significant bit),最大传输率为 5Kbit/s。



| HDQ 参数i  | 受置                                            |                 | ×          |
|----------|-----------------------------------------------|-----------------|------------|
| 通道设置     |                                               |                 |            |
| <b>i</b> | 通道设置                                          | СНО             | •          |
|          | 显示电池信息                                        |                 | 1          |
|          | 芯片型号                                          |                 |            |
|          | bq27000<br>bq27010<br>bq27541<br>bq27541-V200 |                 |            |
|          |                                               |                 |            |
| 波形颜色     |                                               |                 |            |
|          | Break                                         |                 | <b>_</b> _ |
|          | Break Recovery                                |                 | ╤╡         |
|          | Address                                       |                 | ╤╡         |
|          | Read                                          |                 | ╡╡         |
|          | Write                                         |                 | ╡╡         |
|          | Data                                          |                 | ╤╡         |
|          |                                               |                 |            |
| 范围选择     | 冰拔黄八七的龙雨                                      |                 |            |
| 段        | 选挥安方机的泡围                                      | 化卡拉克            |            |
|          | 起始位重<br>缓冲区开头 💽                               | 结束位重<br>· 缓冲区结尾 | •          |
|          |                                               | 确定              | 以消         |

通道设置:设置待测物上的信号端接在逻辑分析仪的通道编号。



显示电池信息:可显示电池监控 IC 和电池之间的指令传递过程

## 分析结果

Write:表示写入数据,后面紧接着数据。

## Read: 表示读取数据,后面紧接着数据。

| Time/Div: 400 us                                  | . U     | l 📕        |        |         |              |                            |                 |
|---------------------------------------------------|---------|------------|--------|---------|--------------|----------------------------|-----------------|
| Acquired: 15:20:4                                 | 2.0     |            | 640 us | 1.28 ms | 1.92 ms 2.56 | 5ms 3.2ms<br>I.I.I.I.I.I.I | 3.84 ms 4.48 ms |
| HDQ                                               | о нро   | Idle Break | Add    | ress:00 | R            | 19                         | Idle            |
| н                                                 | DR      |            |        |         |              |                            |                 |
|                                                   |         |            |        |         |              |                            | _               |
| Label                                             | Channel | •          |        |         |              |                            |                 |
| CH-00         CH-00           CH-01         CH-00 |         | ( HDQ(HDQ) | •      |         |              |                            |                 |
| Timestamp                                         | Address | Read/Write | Data   | ASCII   |              |                            | <u> </u>        |
| 0.00031 %                                         | 00      | Read       | 19     |         |              |                            |                 |
| 0.040312 5                                        | 01      | Read       | 60     | ·       |              |                            |                 |
| 0.090846 5                                        | 00      | Write      | 07     | •       |              |                            |                 |
| 0.135214 5                                        | 01      | Write      | 00     | •       |              |                            |                 |
| 0.1040/ 5                                         | 00      | Read       | 00     | •       |              |                            |                 |
| 0.250882 5                                        | 00      | Write      | 00     | •       |              |                            |                 |
| 0.29522 5                                         | 01      | Write      | 00     |         |              |                            |                 |
| •                                                 |         |            | 1.00   |         |              |                            |                 |
|                                                   |         |            |        |         | 4607897      | 7 <mark>c</mark> 1307      | 5861 🕒 🕅        |

## 显示电池信息

| Time/Div: 400 us        |            | ]                |        |            |         |                        |         |                 |
|-------------------------|------------|------------------|--------|------------|---------|------------------------|---------|-----------------|
| Acquired: 15:20:4       | 2.0        | 1.7 S            | 1.7 S  | 1.701 S    | 1.702 S | 1.702 S                | 1.703 S | 1.704 S 1.704 S |
| НДО                     | 0 HDO      | Idle             | Break  | Address:1C | R       |                        | 40      | Idle            |
| н                       | D <u>R</u> |                  |        |            |         |                        |         |                 |
|                         |            |                  |        |            |         |                        |         |                 |
| Label                   | Channel    |                  |        |            |         |                        |         |                 |
| CH-00 CH-00 CH-00 CH-00 |            | K HDQ(HDQ)       | •      |            |         |                        |         |                 |
| Timestamp               | Address/C  | ommand Code      | Write/ | Read       | Content |                        | Units   |                 |
| 1.140316 \$             | Remaining  | Capacity(10)     | Read   |            |         |                        |         |                 |
| 1.180308 \$             | Remaining  | Capacity(11)     | Read   |            | 3191    |                        | mAh     |                 |
| 1.230316 \$             | FullCharg  | eCapacity(12)    | Read   |            |         |                        |         |                 |
| 1.280316 5              | FullCharg  | eCapacity(13)    | Read   |            | 6694    |                        | mAh     |                 |
| 1.320332 \$             | AverageCu  | rrent(14)        | Read   |            |         |                        |         |                 |
| 1.37032 5               | Averagetu  | rrent(15)        | Read   |            | 0       |                        | шА      |                 |
| 1.460304 5              | TimeToEmp  | cy(10)<br>ty(17) | Read   |            | 65535   |                        | Minutes |                 |
| 11.100001.0             | rimeronmp  | 01(11)           | neud   |            |         |                        |         |                 |
|                         |            |                  |        |            |         |                        |         |                 |
|                         |            |                  |        |            | -       | 4607897 <mark>B</mark> | 1307    | 5861 🕒 🕅        |



# HID Over I<sup>2</sup>C

HID Over I2C (Human Interface Device Over I2C) 主要应用在 Windows 8, ARM 的平台架构上;另一个为 HID Over USB 则是应用在 x86 系统上,在 Windows 8 常 见支持 HID Over I2C 总线分析的装置是触控面板。

参数设置

| HIDover | I2C 参数设置                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                                                                           | ? ×   |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------|-------|
| 参数设置    | 置                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 波形颜 | 色                                                                         |       |
|         | <ul> <li>通道设置</li> <li>SCL</li> <li>SDA</li> <li>ATTN/Interrupt</li> <li>位址设置</li> <li>⑦ 7-bit addressing</li> <li>⑦ 7-bit addressing (In</li> <li>① 10-bit addressing</li> <li>☑ 忽略毛刺</li> </ul> | CH 0<br>CH 1<br>CH 2<br>CH 2<br>cH 2<br>cH 2<br>cH 2<br>cH 2<br>cH 2<br>cH 2<br>cH 2<br>cH 3<br>cH 3<br>cH 4<br>cH 4<br>cH 4<br>cH 4<br>cH 2<br>cH 4<br>cH |     | Start / Restart<br>Address<br>Write / Read<br>Data<br>ACK<br>NACK<br>STOP |       |
| 分析范围    | 围                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                                                                           |       |
|         | 选择要分析的范围<br>起始位置<br>缓冲区开头                                                                                                                                                                         | 结束位置<br>缓冲区结尾 <u>▼</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                                                           |       |
|         |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | 缺省                                                                        | 願定 取消 |

通道设置: 设定待测物上,各个信号端,接在逻辑分析仪的通道编号

**7-bit addressing:**显示7位宽度的地址和1位宽度的Rd/Wr。

7-bit addressing(Include R/W in Address):显示8位宽度地址(7位宽度地址加上

1 位 Rd/Wr)。

**10-bit addressing:**显示 10 位宽度地址。

忽略毛刺:分析时忽略因跳变存储过缓造成的毛刺。



| Time/Ditt: 1 2 us                                                             |               |                  |                                                               |                  |                          |                            |  |  |  |
|-------------------------------------------------------------------------------|---------------|------------------|---------------------------------------------------------------|------------------|--------------------------|----------------------------|--|--|--|
| Acquired: 13:44:3                                                             | 1 921         | 83.6 us          | 85.6 us 87.6 us 89                                            | .6 us 91.6 us 93 | .6 us 95.6 us 97.6       | us 99.6 us 101.6 us        |  |  |  |
| noquirear iorrito.                                                            | 1.1           |                  | <u>alandaralan dara</u>                                       | Truch trucht the | Teta la ta la ta la ta l |                            |  |  |  |
|                                                                               |               | A                | HID Desc: 1E                                                  | A                | HID Desc: 00             | A                          |  |  |  |
| 0 S<br>HID Over I2C                                                           | a. <b>.</b>   |                  |                                                               | 4.9 us           |                          | 5 us                       |  |  |  |
| 15                                                                            | DA            |                  | 2.4 us 1.2 us                                                 | 4.7 us           | 5.2 us                   | 4.7 us                     |  |  |  |
| 3 A<br>HIDeveri20                                                             | ТТΝ           |                  |                                                               |                  |                          |                            |  |  |  |
| Label Ch                                                                      | annel Value 💶 |                  | 1                                                             |                  |                          |                            |  |  |  |
| CH-00         CH-00         CH-00           CH-01         CH-00         CH-00 | RR 📖 🗴        | K HID_Over_I2C(H | IDover 💌                                                      |                  |                          |                            |  |  |  |
| Timestamp                                                                     | Status        | Address          | Field                                                         |                  | Information              | <b>^</b>                   |  |  |  |
| 0.0327 ms                                                                     | Repeat Start  | Wr 4A            | HID Descriptor Address(                                       | 0000)            | HID Descript             | tor 🗌                      |  |  |  |
| 0.0939 ms                                                                     | Repeat Start  | Rd 4A            | wHIDDescLength(001E)                                          |                  | 30 bytes HI              | ) Descriptor               |  |  |  |
| 0.1138 ms                                                                     |               |                  | bcdVersion(0100)                                              |                  | Compliant w              | th Version 1.00            |  |  |  |
| 0.1336 ms                                                                     |               |                  | wReportDescLength(00B5)                                       |                  | 181 bytes Re             | port Descriptor            |  |  |  |
| 0.1535 ms                                                                     |               |                  | wReportDescRegister(001                                       | E)               | Identifier 1             | to read Report Descriptor  |  |  |  |
| 0.1733 ms                                                                     |               |                  | wInputRegister(00D3)                                          |                  | Identifier 1             | to read Input Report       |  |  |  |
| 0.1931 ms                                                                     |               |                  | wMaxInputLength(0014)                                         |                  | 20 bytes ler             | ngth field of Input Report |  |  |  |
| 0.2129 ms                                                                     |               |                  | wOutputRegister(00E7) Identifier to read Output Report        |                  |                          |                            |  |  |  |
| 0.2328 ms                                                                     |               |                  | wMaxOutputLength(0014) 20 bytes length field of Output Report |                  |                          |                            |  |  |  |
| 0.2526 ms                                                                     |               |                  | wCommandRegister(00FB)                                        |                  | Identifier 1             | for Command Register 🚽     |  |  |  |
| •                                                                             |               |                  |                                                               |                  |                          |                            |  |  |  |
|                                                                               |               |                  |                                                               |                  |                          |                            |  |  |  |



I<sup>2</sup>C

是一种两线式串行通讯总线,使用多主从架构,由 Philips 公司在 1980 年代为了 让主机板、嵌入式系统或手机用以连接低速外围装置而发展所制定的一种通讯规 格。也是电子电路系统中经常使用的种类。I<sup>2</sup>C 只使用两条双向信号线,一条是 频率线(SCL)和一条数据线(SDA)所构成。信号内容共有开始(Start)、地址 (Address)、数据(Data)、读写(Read/Write)等,其传输的方式是双向的,数据格式 分为 8 bits 和 10 bits 两种。传送速率为 100kbit/s-3.4Mbit/s。

## 参数设置

| I2C 参数设置                                  | ×                                     |
|-------------------------------------------|---------------------------------------|
| 参数设置<br>                                  | 波形颜色                                  |
| Clock Channel (SCL) CH 0                  | ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● |
| Data Channel (SDA) CH 1                   |                                       |
|                                           |                                       |
| 7-bit addressing                          |                                       |
| 7-bit addressing (Include R/W in Address) |                                       |
| 10-bit addressing                         | Start 🔽                               |
|                                           | Re-Start 📃 🗸                          |
|                                           | Stop                                  |
| 显示数据方式,                                   |                                       |
| □ 忽略毛刺                                    |                                       |
| 方法与范围                                     | Reserved Address                      |
| 300 选择要分析的方法与范围                           |                                       |
|                                           |                                       |
| 缓冲区开头    缓冲区结尾                            |                                       |
|                                           | 缺省 确定 取消                              |

Clock Channel (SCL): I<sup>2</sup>C 数据传输之 Clock。

Data Channel (SDA): I<sup>2</sup>C 数据传输之 Data。



地址设置:设置地址模式

7-bit addressing:显示7位宽度的地址和1位宽度的Rd/Wr。

7-bit addressing(Include R/W in Address):显示8位宽度地址(7位宽度地址加上

1 位 Rd/Wr)。

10-bit addressing:显示 10 位宽度地址。

報告視窗:顯示資料方式:在報告區中顯示資料可以選擇 8 或 16 欄位。

忽略毛刺:分析时忽略因跳变存储过缓造成的毛刺。

分析结果

Wr:表示写入数据。

Rd: 表示读取数据。

Information 的第一栏会显示数据频率。

| Time/Div: 50 us               | <b>7</b>             |          |                                 |           |        |       |                     |       |        |                  |                               |                                                                   |
|-------------------------------|----------------------|----------|---------------------------------|-----------|--------|-------|---------------------|-------|--------|------------------|-------------------------------|-------------------------------------------------------------------|
| Acquired: 08:00:0             | 0.0 46               | 3.604 ms | 463.68                          | 34 ms     | 463.76 | 54 ms | 463.84              | 14 ms | 463.93 | 24 ms            | 464.004 ms 46                 | 4.084 ms 464.164 ms                                               |
| 12C 0 5                       | IDLE <mark>)S</mark> | Addr: 45 | <mark>  /</mark><br>]   5<br>3∪ | 4-1<br>12 | 01     |       | A<br>] 35u<br>[ 42u |       | Addr:4 | 5<br>            | A 04<br>43u 111111<br>42u 52u | A         40           33u         1111           35u         24u |
| Label Cł                      | hannel 💶             |          |                                 |           |        |       |                     |       |        |                  |                               |                                                                   |
| CH-00 CH-00 CH-00 CH-00 CH-00 | <b>RR 120</b>        | .(I2C)   |                                 | -         |        |       |                     |       |        |                  |                               |                                                                   |
| Sample                        | Status               | Addr     | DO                              | Dl        | D2     | D3    | D4                  | D5    | D6     | D7               | ASCII                         | Information 🔺                                                     |
| 457550                        | Start                | Wr 45    | 4D                              | 03        | 10     | 00    | 28                  |       |        |                  | M(                            |                                                                   |
| 463551                        | Start                | Wr 45    | 01                              |           |        |       |                     |       |        |                  | •                             |                                                                   |
| 463857                        | Repeat Start         | Rd 45    | 04                              | 4D        | 10     | 4E    | 09                  |       |        |                  | .M.N.                         |                                                                   |
| 469762                        | Start                | Wr 45    | 4D                              | 03        | 10     | 00    | 73                  |       |        |                  | Ms                            |                                                                   |
| 475708                        | Start                | Wr 45    | 01                              |           |        |       |                     |       |        |                  | •                             |                                                                   |
| 476018                        | Repeat Start         | Rd 45    | 04                              | 4D        | 10     | 4E    | 0A                  |       |        |                  | .M.N.                         |                                                                   |
| 482008                        | Start                | Wr 45    | 4D                              | 03        | 10     | 00    | 42                  |       |        |                  | МВ                            |                                                                   |
| 488028                        | Start                | Wr 45    | 01                              |           |        |       |                     |       |        |                  | •                             |                                                                   |
| 488337                        | Repeat Start         | Rd 45    | 04                              | 4D        | 10     | 4E    | OB                  |       |        |                  | .M.N.                         |                                                                   |
| 494304                        | Start                | Wr 45    | 4D                              | 03        | 10     | 00    | OF                  |       |        |                  | M                             |                                                                   |
| 500190                        | Start                | Wr 45    | 01                              |           |        |       |                     |       |        |                  | •                             |                                                                   |
| 500562                        | Repeat Start         | Rd 45    | 04                              | 4D        | 10     | 4E    | 00                  |       |        |                  | .M.N.                         |                                                                   |
| 506481                        | Start                | Wr 45    | 4D                              | 03        | 10     | 00    | BO                  |       |        |                  | M                             |                                                                   |
| 512509                        | Start                | Wr 45    | 01                              |           |        |       |                     |       |        |                  | •                             |                                                                   |
| 512803                        | Repeat Start         | Rd 45    | 04                              | 4D        | 10     | 4E    | OD                  |       |        |                  | .M.N.                         | <u> </u>                                                          |
|                               |                      |          |                                 |           |        |       |                     |       |        |                  |                               | Þ                                                                 |
|                               |                      |          |                                 |           |        |       | 1                   | 80.39 | 9 ms   | <mark>8</mark> 1 | .98.351 ms B                  | 17.952 ms 🕒 🛄 🎹                                                   |



# I3C

I3C 是 I<sup>2</sup>C 界面的扩展,所以依旧维持二线 SCL (clock), SDA (data) 同于 I<sup>2</sup>C。 I3C SCL clock 的频率在 spec. 中定义最大可达 12.9 MHz, 一般都是在 12.5 MHz。

支持三种工作电压,分别是 1.2 V / 1.8 V / 3.3 V。

I3C 是新一代的传感器 (sensor) 接口规格, 其在一个统一规格中整合了多种传感器界面,主要应用是简化智能型手机, 物联网设备以及汽车系统中的传感器整合。

参数设定

| I3C 参數設定        | ×             |
|-----------------|---------------|
| 通道設定            | 波形顏色          |
| SCL A0          | ● S / Sr / P  |
| SDA A1          | ACK / NACK    |
|                 | Address 🗸 🗸 🗸 |
|                 | Command       |
| 搿皍각摆            | Data          |
|                 | RnW           |
| 選擇要分析的範圍        | T / PAR       |
|                 | HDR RESTART   |
| 緩衝區開頭 ~ 緩衝區結尾 ~ | HDR Exit      |
|                 |               |
|                 | 預設 確定 取消      |

Clock Channel (SCL): I3C 数据传输之 Clock。

Data Channel (SDA): I3C 数据传输之 Data。



#### 分析结果 Time/Div=1 us ١ F T 14.27 us 12.84 us 2.85 us 4.28 us 5.71 us 7.14 us 8.56 us 9.99 us 11.42 us I3C Reserved byte (7E) RnW (0) A Comm n - Direc **⊿** 13C 0 abel Chilon Sample State 1 -150n S State 2 35.95us Sr 3 47.2us Rd 01 4 55.45us Sr 5 69.7us State Search All Field State Address Command S Wr ISC Reserved Byte(7E) Vendor Extension - Di. Sr Rd 01 Rd 01 Data nformation Data (01) Data (02) Data (03) Data (04) I3C Directed CCC Read;



# I<sup>2</sup>C EEPROM

EEPROM,或称 E<sup>2</sup>PROM,全称「电子抹除式可复写只读存储器 (Electrically-Erasable Programmable Read-Only Memory)」。EEPROM 组件,其接 口通常可分为串行式(serial)与并行式(parallel)两类,I<sup>2</sup>C EEPROM 属于 2 线串行 式 EEPROM,其型号为以 24 开头的系列。

## 参数设置

| I2C(EEPROM 24条列) 参数设置                     |             | X                  |
|-------------------------------------------|-------------|--------------------|
| 参数设置                                      | 波形颜色        |                    |
|                                           | 🕕 设置数据特性的颜色 |                    |
| Clock Channel (SCL) CH 0                  | Start       |                    |
| Data Channel (SDA)                        |             |                    |
|                                           | Control 🗾 🚽 | Device ID          |
| 位址设置                                      | Address 🔽 🗸 | Command Select 📃 💌 |
| 位址有效位数 7 💌                                | Read 🔽      | Data 📃 👻           |
| 7-bit addressing (Include R/W in Address) | Write       | Stop 🔽             |
| □ 分析 24LCS61 / 24LCS62                    | ACK         |                    |
| ▼ 忽略毛刺                                    | NACK 🗾 🗸    |                    |
| 方法与范围                                     | Chip 🔽      |                    |
| <b>代表</b> 选择要分析的方法与范围                     |             |                    |
| 起始位置 结束位置                                 |             |                    |
| 缓冲区开头 💌 缓冲区结尾 💌                           |             |                    |
|                                           |             |                    |
|                                           |             | 缺省 确定 取消           |

Clock Channel (SCL): I<sup>2</sup>C EEPROM 数据传输之 Clock。

Data Channel (SDA): I<sup>2</sup>C EEPROM 数据传输之 Data。

地址有效位数:设置 I<sup>2</sup>C EEPROM 地址的有效位数,缺省为7。

7-bit addressing (Include R/W in Address):显示 8 位宽度地址(7 位宽度加上 1

位 Rd/Wr)。

分析 24LCS61 / 24LCS62: 选择是否分析 24LCS61 / 24LCS62, 若勾选,则会以



24LCS61 / 24LCS62 特有的 EEPROM 的协议去分析。

忽略毛刺:分析时忽略因跳变存储过缓造成的毛刺。

| Time/Div: 5 us                                    |           | 91.1     | .e (        | 99.1 us       | 107.1              | 15.1 us |         | 122.1 us   | 1         | 21.1.05 |                       | 139 1 us |        | 147.1 us | 3        |
|---------------------------------------------------|-----------|----------|-------------|---------------|--------------------|---------|---------|------------|-----------|---------|-----------------------|----------|--------|----------|----------|
| Acquired: 15:56:4                                 | 1.0 1.1.1 |          |             |               | <u>1.1.1.1.1.1</u> | 1111    | <u></u> |            |           |         | . I . i               |          |        |          |          |
|                                                   | A         | s        | Control C   | Code: 0A Chip | Select: 00 Rd      | A       |         |            |           | Data: 2 | 9                     |          |        | A        | -        |
| I2C_eeProm 0 S                                    | a2        | .7u 3.1u |             |               |                    | 7.2     | 24      |            |           |         |                       | '        | ÷      | 2.8u     |          |
| 15                                                | DA        | 3u 2     | .80 2.50 2. | 5u 10u        | 2.6u               | 1       | 13.4u   |            | 2.50 2.50 | 1 2.5u  | 5u                    | 5u       |        | 5.9u     |          |
| I2C(EEPROM)                                       |           |          |             |               |                    |         | -       | -          |           | ļĻ      |                       |          |        |          | -        |
| Label Ch                                          |           | 1        |             | -             |                    |         | -       | -          |           |         |                       |          | -      |          | <u> </u> |
|                                                   |           |          |             |               |                    |         |         |            |           |         |                       |          |        | لند      |          |
| CH-00         CH-00           CH-01         CH-00 |           | I2C_eel  | Prom(I2C(   | EEPR(         |                    |         |         |            |           |         |                       |          |        |          |          |
| Sample                                            | Ctrl Code | CS       | Rd/Wr       | Addr Hi       | Addr Lo            | DO      | D1      | D2         | D3        | D4      | D5                    | D6       | D7     | ASCII    | ▲        |
| 15                                                | OA        | 00       | Wr          | 00            | 00                 |         |         |            |           |         |                       |          |        |          |          |
| 867                                               | OA        | 00       | Rd          |               |                    | 29      | 6B      | D6         | EB        | 20      | A9                    | 03       | 21     | )k,.     |          |
| 3362                                              |           |          |             |               |                    | BB      | EF      | 5F         | 5F        | 40      | FC                    | 10       | EC     | L.       |          |
| 5515                                              |           |          |             |               |                    | BE      | D4      | ED         | 51        | 06      | 45                    | 4D       | 99     | Q.E      |          |
| 7669                                              |           |          |             |               |                    | 25      | 8E      | 51         | 65        | 53      | 05                    | 5C       | 33     | %.QeS.   |          |
| 9822                                              |           |          |             |               |                    | EC      | ЗF      | 54         | 16        | A7      | 22                    | CD       | CC     | .?T"     |          |
| 11975                                             |           |          |             |               |                    | 8F      | 60      | D4         | F3        | 4E      | 4A                    | 60       | ЗD     | .`NJ     |          |
| 14129                                             |           |          |             |               |                    | CB      | EE      | 2 <b>F</b> | 68        | 16      | 75                    | 93       | 6D     | /h.u     |          |
| 16282                                             |           |          |             |               |                    | 35      | 33      | F4         | OD        | 4C      | E6                    | 05       | 39     | 53L.     |          |
| 74398                                             | AO        | 00       | Wr          | 00            | 40                 |         |         |            |           |         |                       |          |        |          |          |
| 75265                                             | AO        | 00       | Rd          |               |                    | 21      | 10      | 73         | 11        | 8B      | DO                    | Al       | 5A     | !.s      |          |
| 77760                                             |           |          |             |               |                    | 50      | 63      | 91         | 32        | D8      | F6                    | A8       | E9     | Pc.2     |          |
| 79913                                             |           |          |             |               |                    | F9      | 80      | 72         | 40        | 8D      | 6E                    | 79       | EC     | r0.r     | •        |
| •                                                 |           |          |             |               |                    |         |         |            |           |         |                       |          |        | •        |          |
|                                                   |           |          |             |               |                    | 4.      | .876 m  | ns 📕       | 24        | 4.53 m  | s <mark>A</mark><br>B | 19       | .654 n | ns 🕒 🔟   |          |



 $I^2S$ 

是 IC 间传输数字音讯数据的一种接口标准,是飞利浦公司为数字音频设备之间 的音频数据传输而制定的一种总线标准,常被使用在传送 CD 的 PCM 音讯到 CD 播放器中的 DAC 上。在 I<sup>2</sup>S 的标准中,规定了硬件接口规范及数字音频数据的 格式,采用串行的方式传输 2 组(左右声道)数据。由三条传输线组成,一条是频 率线(SCK)、另一条是字符选择线(WS)以及数据线(SD)。数据格式最大到 20 bits。



| I2S 参数设置 | 置                                                                                                                        |          |                                                                                                  |
|----------|--------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------|
| 参数设置     |                                                                                                                          | 波形颜色     |                                                                                                  |
| <b>`</b> | Clock Channel (SCK) CH 0 · ·<br>Word Select Channel (WS) CH 1 · ·<br>Data Channel (SD) CH 2 · ·<br>Data bits 16 Bits · · |          | 设置资料特性的颜色,你可以选择两个数<br>值,并赋予特别的颜色,让观看分析结果<br>时,更为方便。(数值用16进制)<br>第一组数值及其颜色<br>0<br>第二组数值及其颜色<br>0 |
|          | 🔲 画出声音波形 🛛 🔽 声音重放                                                                                                        |          |                                                                                                  |
|          | □ 储存声音波形(.WAV)                                                                                                           | 分析范围     |                                                                                                  |
|          | 分析方法    显示数据方式<br>I2S Justified Mode                                                                                     | <b>K</b> | 选择要分析的范围<br>起始位置<br>缓冲区开头<br>结束位置<br>缓冲区结尾                                                       |
|          |                                                                                                                          |          | 缺省 确定 取消                                                                                         |

参数设置:设置待测物上各个信号端接在逻辑分析仪的通道编号。

Data bits: 分析数据的位数,范围是 1-24 Bits。缺省为 16 Bits。

画出声音波形:可于波形区画出声音的波形。

录音重放:默认为开启,此功能可以把所有 Data 收集起来后,于分析完毕后进 行播放。您可以用最快的方式确认声音是否已经正常传送,而不必逐项检视数据。 由于播放的时间长度,会根据逻辑分析仪能纪录的数据深度有关,建议您可将逻 辑分析仪的数据深度拉大,并减少逻辑分析仪使用的通道数量。

储存声音波形(.WAV): 可将所有 Data 储存为声音档(.WAV)并存于工作目录下。



分析方法: 可根据需求选择 I2S Justified/MSB Justified/LSB Justified/PCM/TDM

模式。

显示数据方式: 可选择报告区显示的栏数。

## 分析结果

将波形字段解析出来

| Time/Div: | 16 us <mark>U</mark> |           |          |          |          | <b>I</b> |                  |          |                      |               |          |
|-----------|----------------------|-----------|----------|----------|----------|----------|------------------|----------|----------------------|---------------|----------|
| Acquired: | 10:21                | -102.4 us | -76.8 us | -51.2 us | -25.6 us | 🕹        | 25.6 us          | 51.2 us  | 76.8 us              | 102.4 us      |          |
|           |                      | L:B2D40   | R:B2D40  | L:B67E0  | R:B67E0  | L:BA1B0  | R:BA1B0          | L:BDA90  | R:BDA90              | L;C1270       | •        |
| I2S_Data  | o sci                |           |          |          |          |          |                  |          |                      |               |          |
|           | 1 W9                 | 24u       | 24u      | 24u      | 24u      | 24u      | 24.01u           | 24u      | 24u                  | 24u           |          |
|           | 2 SD                 | 80 100    | 10u      | <u></u>  | 90       | <b></b>  | <b>1</b> 117.99u |          | <b>]            </b> |               |          |
| Label     | Chan                 | ·         |          |          |          |          |                  |          |                      | •             | <b>_</b> |
|           | 00 CH-00<br>01 CH-00 |           |          | <b>v</b> |          |          |                  |          |                      |               |          |
| Sample    |                      | I25_Data  |          |          |          |          |                  |          |                      |               | •        |
| 25253     |                      | R:CB3B0   |          |          |          |          |                  |          |                      |               |          |
| 27653     |                      | L:CE720   |          |          |          |          |                  |          |                      |               |          |
| 30053     |                      | R:CE720   |          |          |          |          |                  |          |                      |               |          |
| 32453     |                      | L:D1960   |          |          |          |          |                  |          |                      |               |          |
| 34854     |                      | R:D1960   |          |          |          |          |                  |          |                      |               |          |
| 37254     |                      | L:D4A40   |          |          |          |          |                  |          |                      |               |          |
| 39634     |                      | R:D4A40   |          |          |          |          |                  |          |                      |               |          |
| 42034     |                      | B.D79E0   |          |          |          |          |                  |          |                      |               |          |
| 46854     |                      | L:DA810   |          |          |          |          |                  |          |                      |               |          |
| 49255     |                      | R:DA810   |          |          |          |          |                  |          |                      |               |          |
| 51655     |                      | L:DD4D0   |          |          |          |          |                  |          |                      |               | -        |
|           |                      |           |          |          |          |          |                  |          |                      | <b>↓</b>      |          |
|           |                      |           |          |          |          | -22.9    | 908 ms 📕         | -23.04 r | ns <mark>A</mark> -: | 131.75 us 🕒 🔟 |          |

将波形以声音波形绘制出来



| Time/Div: 2    | 56 us 🗓                      |                                           |           |           |            |           |            |          | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------|------------------------------|-------------------------------------------|-----------|-----------|------------|-----------|------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acquired: 1    | 0:12:0                       | 2.9096                                    | 65 ms 3.3 | 319265 ms | 3.728865 n | ns 4.1384 | 465 ms 4.9 | 48065 ms | 4.957665 ms 5.367265 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| I2S_Wave       | 02 Min<br>Nin<br>Min<br>Hill | : 32569<br>: 32569<br>: 32758<br>: -32757 |           |           |            |           | 54 00:0    |          | 30000 T<br>100000<br>-10000<br>30000<br>100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br>-100000<br> |
| Label          | Chann                        | 1                                         | 1         |           |            |           |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CH-00<br>CH-01 | CH-00                        | R 111                                     | Bus I2    | S_Wave(I2 | S)         | -         |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S St           | . D0                         | D1                                        | D2        | D3        | D4         | D5        | D6         | D7       | ASCII(D0-D7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4850 Data      | R:4257                       | L:500F                                    | R:5C69    | L:672D    | R:702D     | L:7742    | R:7C4E     | L:7F38   | BWP.ig-p-wB N 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5016 Data      | R:7FF5                       | L:7E83                                    | R:7AE4    | L:752D    | R:6D74     | L:63DC    | R:588E     | L:4BBB   | .~.z.u-mtc.X.K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5183 Data      | R:3D9E                       | L:2E75                                    | R:1E7D    | L:0E00    | R:FD47     | L:EC98    | R:DC41     | L:CC85   | =u}GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5349 Data      | R:BDA8                       | L:AFF1                                    | R:A397    | L:98D4    | R:8FD3     | L:88BD    | R:83B3     | L:80C8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5516 Data      | R:800B                       | L:817E                                    | R:851B    | L:8AD3    | R:928D     | L:9C24    | R:A773     | L:B444   | ••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                |                              |                                           |           |           |            |           |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                |                              |                                           | 5.9       | 9412575   | 7 KHz 📕    | 100.0     | 81566477   | 7 Hz 🔒   | 101.780963296 Нг 🕒 🕅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |


## **I80**

Inter 8080-series interface 主要是用在 LCM 的数据传递。简称 I80 interface。 分析 8080-series 需要 3 或 4 个 Ctrl Bus(WR、RD、CS 及 D/C), Data Bus 则根据 使用者定义而定,至少要 4 bits。因此至少需要 7 个 Channel:WR、RD、CS、 D0-D3。若有 D/C Pin 则需要 8 个 Channel。这些信号的通道编号可以自行调整。 而 8 bits Data bus 则需要 11 个信号:WR、RD、CS、D0-D7。依此类推...。以下 是 8 bits Data bus 的范例,将 I80 Bus 根据下表与逻辑分析仪连接。WR 接到 CH0, 依此类推。

| I80 Bus | 逻辑分析仪 |
|---------|-------|
| WR      | CH-00 |
| RD      | CH-01 |
| CS      | CH-02 |
| D0      | CH-03 |
| D1      | CH-04 |
| D2      | CH-05 |
| D3      | CH-06 |
| D4      | CH-07 |
| D5      | CH-08 |
| D6      | CH-09 |
| D7      | CH-10 |







通道选择:设置待测物上,各个信号端,接在逻辑分析仪的通道编号。分别是WR、RD、CS,以及 DATA PIN。

执行 D/C: 当 D/C Pin 执行时,会根据此 Pin 来决定是 Data 或是 Command。D/C Pin 为 Low 是 Command, D/C Pin 为 High 是 Data。
数据总线: 设置分析的 DATA PIN 是 4 Bits、24 Bits 的数据。
位顺序: 设置分析的数据是 LSB First 还是 MSB First。
数据显示方式: 设置 Report 窗口一列有几笔 data。

#### 分析结果

| Time/Div: 24<br>Acquired: 13 | 40 ns<br>3:59:51.( | <b>7</b>     | 2.05 ms 2.  | 051ms 2.0         | )51 ms 2  | 2.051 ms  | 2.052 ms | 2.052 ms                                       | 2.053 ms  | 2.053 ms |
|------------------------------|--------------------|--------------|-------------|-------------------|-----------|-----------|----------|------------------------------------------------|-----------|----------|
|                              |                    |              |             | .   .   .   .   . | 1.1.1.1.1 |           |          |                                                |           |          |
|                              |                    |              | Idle        |                   |           | Command W | rite:DE  | <u>, i i i i i i i i i i i i i i i i i i i</u> | Idle      |          |
|                              | 2 WR               |              |             |                   |           |           |          |                                                |           |          |
|                              | 3 RD               |              |             |                   |           |           |          |                                                |           |          |
|                              | 0 CS               |              |             |                   |           |           |          |                                                | 3.66u     |          |
|                              | 4 DO               |              |             |                   |           |           | + +      |                                                |           |          |
| 180                          | 5 D1               |              |             |                   |           |           |          |                                                |           |          |
| 100                          | Б U2<br>7 D2       |              |             |                   |           |           | + +      |                                                |           |          |
|                              | 7 D3<br>9 D4       |              |             |                   |           |           | + +      |                                                |           |          |
|                              | 9.05               |              |             |                   |           |           |          |                                                |           |          |
|                              | 10 D6              |              |             |                   |           |           |          |                                                |           |          |
|                              | 11 D7              |              |             |                   |           |           |          |                                                |           |          |
|                              | 1 D/C              |              |             |                   |           |           |          |                                                |           |          |
|                              |                    |              |             |                   |           |           |          |                                                |           | -        |
| Label                        | Chan               | nel 💶 🔳      |             |                   |           |           |          |                                                |           | •        |
| CH-00                        | CH-00              | Bus I        | 80(180)     | -                 |           |           |          |                                                |           |          |
| Semple                       | D                  | ate (Command | Write (Bood | Dete              |           | ASCTT     |          |                                                |           |          |
| Sample                       | D                  |              | Write/Read  | Data              |           | ASCII     |          |                                                |           |          |
| 102559                       | р<br>С             | ata          | Write       | DF                |           | Ь         |          |                                                |           |          |
| 102925                       | D                  | ata          | Write       | 01                |           |           |          |                                                |           |          |
| 103310                       | D                  | ata          | Write       | 00                |           |           |          |                                                |           |          |
| 153792                       | C                  | ommand       | Write       | BB                |           | »         |          |                                                |           |          |
| 154158                       | D                  | ata          | Write       | 0A                |           |           |          |                                                |           |          |
| 154543                       | D                  | ata          | Write       | 00                |           |           |          |                                                |           |          |
| 205025                       | C                  | ommand       | Write       | B7                |           | ·         |          |                                                |           |          |
| •                            |                    |              |             |                   |           |           |          |                                                |           | •        |
|                              |                    |              |             |                   |           | -5.06     | ius 📕    | -4.66 us                                       | A<br>B 40 | 0 ns 🕒 🕕 |



## IDE

IDE(Integrated Device Electronics)整合式磁盘电子接口,简称 IDE,是一种使用 于电脑用硬盘机(hard disks),固态硬盘(solid-state drives),光驱(CD-ROM) 等等 之标准传输接口。IDE 最早由美国 Western Digital 公司使用此名称来进行其硬盘 销售业务。其正式的规格名称是 ATA/ATAPI(Advanced Technology Attachment/AT Attachment Packet Interface)接口。由于硬盘的容量增加,传输速 度提升需求及各种存储装置不断推陈出新,使 ATA 规格持续增订。在 1998年, ATA-4 增加了 ATAPI 规格 使 ATA 可以连结光驱及其它存储媒体。在 2003年, 发表了 SATA(Serial ATA)规格,使原来的并行 ATA 追溯更名为 PATA(Parallel ATA)以资区别。

分析 IDE,因为是并行传输,需使用较多的通道,因此我们须将其分为三个类型。

一般通道(11 pin): 其信号为 DASP-、DIOR-:HDMARDY-:HSTROBE、
DIOW-:STOP、DMACK-、DMARQ、INTRQ、IORDY:DDMARDY-:DSTROBE、
PDIAG-:CBLID-、RESET-、CSEL 及 IOCS16-。
缓存器通道(5 pin): 其信号为 CS(0:1)-及 DA(2:0)。
数据通道(16 pin): 其信号为 DD(15:0)。



| 我们建议 IDE bus | 与逻辑分析仪之接线图如下 | ; |
|--------------|--------------|---|
|--------------|--------------|---|

| IDE Pin No. | IDE Pin name               | IDE Pin Description                                        | LA default Channel No. |  |  |
|-------------|----------------------------|------------------------------------------------------------|------------------------|--|--|
| Pin1        | Reset-                     | Hardware reset                                             | Channel 0              |  |  |
| Pin2        | Ground                     |                                                            |                        |  |  |
| Pin3        | DD7                        | Device data                                                | Channel 1              |  |  |
| Pin4        | DD8                        | Device data                                                | Channel 2              |  |  |
| Pin5        | DD6                        | Device data                                                | Channel 3              |  |  |
| Pin6        | DD9                        | Device data                                                | Channel 4              |  |  |
| Pin7        | DD5                        | Device data                                                | Channel 5              |  |  |
| Pin8        | DD10                       | Device data                                                | Channel 6              |  |  |
| Pin9        | DD4                        | Device data                                                | Channel 7              |  |  |
| Pin10       | DD11                       | Device data                                                | Channel 8              |  |  |
| Pin11       | DD3                        | Device data                                                | Channel 9              |  |  |
| Pin12       | DD12                       | Device data                                                | Channel 10             |  |  |
| Pin13       | DD2                        | Device data                                                | Channel 11             |  |  |
| Pin14       | DD13                       | Device data                                                | Channel 12             |  |  |
| Pin15       | DD1                        | Device data                                                | Channel 13             |  |  |
| Pin16       | DD14                       | Device data                                                | Channel 14             |  |  |
| Pin17       | DD0                        | Device data                                                | Channel 15             |  |  |
| Pin18       | DD15                       | Device data                                                | Channel 16             |  |  |
| Pin19       | Ground                     |                                                            |                        |  |  |
| Pin20       | Key pin                    |                                                            |                        |  |  |
| Pin21       | DMARQ                      | DMA request                                                | Channel 17             |  |  |
| Pin22       | Ground                     |                                                            |                        |  |  |
| Pin23       | DIOW-:STOP                 | Device I/O write: Stop Ultra<br>DMA burst                  | Channel 18             |  |  |
| Pin24       | Ground                     |                                                            |                        |  |  |
| Pin25       | DIOR-:HDMARDY-<br>:HSTROBE | Device I/O read: Ultra DMA<br>ready: Ultra DMA data strobe | Channel 19             |  |  |
| Pin26       | Ground                     |                                                            |                        |  |  |
| Pin27       | IORDY:DDMARDY-<br>:DSTROBE | I/O channel ready: Ultra DMA ready: Ultra DMA data strobe  | Channel 20             |  |  |
| Pin28       | CSEL                       | Cable select                                               | Channel 21             |  |  |
| Pin29       | DMACK-                     | DMA acknowledge                                            | Channel 22             |  |  |
| Pin30       | Ground                     |                                                            |                        |  |  |
| Pin31       | INTRQ                      | Device interrupt                                           | Channel 23             |  |  |
| Pin32       | Obsolete (see note)        | Device 16-bit I/O in ATA-2                                 | Channel 24             |  |  |
| Pin33       | DA1                        | Device address                                             | Channel 25             |  |  |
| Pin34       | PDIAG-:CBLID-              | Passed diagnostics: Cable<br>assembly type identifier      | Channel 26             |  |  |
| Pin35       | DA0                        | Device address                                             | Channel 27             |  |  |
| Pin36       | DA2                        | Device address                                             | Channel 28             |  |  |
| Pin37       | CS0-                       | Chip select                                                | Channel 29             |  |  |
| Pin38       | CS1-                       | Chip select                                                | Channel 30             |  |  |
| Pin39       | DASP-                      | Device active, device 1 present                            | Channel 31             |  |  |
| Pin40       | Ground                     |                                                            |                        |  |  |



### 参数设置

| IDE 参数 | 设置                                                        |                                                  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------|-----------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 通道选择   |                                                           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1      | 一般 寄存器 数据总线 DIOR-:HDMARDY-:HSTROBE C                      | H 19 · PDIAG-:CB                                 | LID- CH 26 ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | DIARQ C<br>IORDY:DDMARDY:DSTROBE C<br>DMACK- C<br>INTRQ C | H 10 + RES<br>H 20 + CSE<br>H 22 + IOC<br>H 23 + | SET- CH 0<br>CH 21<br>S16- CH 24<br>CH 24 |
| 波形颜色.  | 及设置<br>传输模式   寄存器颜色   分析报表                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -      | Transferring Mode                                         | Max Transferring Rate                            | Standard 🔺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | DMA Single word, Mode 0                                   | 2.11MByte/sec                                    | ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | DMA Single word, Mode 1                                   | 4.22MByte/sec                                    | ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | DMA Single word, Mode 2                                   | 8.33MByte/sec                                    | ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | DMA Multiple word, Mode 0                                 | 4.17MByte/sec                                    | ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | DMA Multiple word, Mode 1                                 | 13.3MByte/sec                                    | ATA-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | DMA Multiple word, Mode 2                                 | 16.7MByte/sec                                    | ATA-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | ULTRA DMA Mode 0                                          | 16.6MByte/sec                                    | ATA-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | ULTRA DMA Mode 1                                          | 25MByte/sec                                      | ATA-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | ULTRA DMA Mode 2                                          | 33MByte/sec                                      | ATA-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | ULTRA DMA Mode 3                                          | 44MByte/sec                                      | ATA-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | ULTRA DMA Mode 4                                          | 66MByte/sec                                      | ATA-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | ULTRA DMA Mode 5                                          | 100MByte/sec                                     | ATA-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | ULTRA DMA Mode 6                                          | 133MByte/sec                                     | ATA-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 范围选    | 择<br>选择要分析的范围<br>起始位置                                     | 结束位置                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | 緩/甲区/井头                                                   | 緩冲区結尾                                            | <b>•</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                                                           | 缺省                                               | 确定 取消                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

**通道选择:**设置待测物上各个信号端接在逻辑分析仪的通道编号。区分为3个页面(一般、寄存器及数据总线)来进行定义。

传输模式:您可以指定待测装置会使用的规格是哪一种,以便于 IDE 分析时可以 正确解释命令。若没正确指定,分析亦可进行。

**分析报告:**您可以指定在显示报告窗口只显示那些寄存器的,比如,数据寄存器 不勾选时,有关于数据寄存器的数据就不会出现在报告窗口。这样,这样在检视 分析结果时,就会过滤掉数据寄存器的内容。



### 分析结果

| Time/Div: 300 ns               |               | <b>I</b>            |           |                   |            |           |                |                |          |
|--------------------------------|---------------|---------------------|-----------|-------------------|------------|-----------|----------------|----------------|----------|
| Acquired: 08:00:0              | 0.0           |                     | 2.1 us    | 2.6 us            | 3.1us      | 3.6 us    | 4.1 us         | 4.6 us 5.1     | us       |
| ATA/ATAPI                      | I5,           | 13,11,9 Sect        | or cnt:01 | LBA Low           | 01 L       | BA Mid:00 | LBA High       | 0 Device: Devi |          |
| DIOR-:HDMARDY-:HS              | STROBE 19     |                     |           |                   |            |           |                |                |          |
| DIOW-:STOP                     | 18            |                     | 300n      | 500n              | 300n 400   | in 300n   | 500n           | 300n 600n      |          |
| Data(015)                      | 16,           | 14,12, 0101         | ) 51      | 01 X              | 3200       | Υ <u></u> | 0000 χ         | 00A1           | )<br>DCA |
| Register                       | 29,           | .30,28, <b>2</b> 0A | (18) OB   | Υ <sub>18</sub> Υ | 0C         | Ý         | οD <u>(18)</u> | 0E 18          | ( OF     |
|                                | 17            |                     |           |                   |            | _^        |                |                |          |
| TORDY:DDMARDY-:D               | STROBE 20     |                     |           |                   |            |           |                |                |          |
| DMACK                          | 201110000 200 |                     |           |                   |            |           |                |                |          |
| DMACK-                         | É             |                     |           |                   |            |           |                |                |          |
| INTRQ-                         | 23            |                     |           |                   |            |           |                |                |          |
| PDIAG-:CBLID-                  | 26            |                     |           |                   |            |           |                |                |          |
| DASP-                          | 81            |                     |           |                   |            |           |                |                |          |
| Label                          | Ch            | hannel              |           |                   |            |           |                |                |          |
| ⊙/Ⅲ CH-00 CH-00<br>CH-01 CH-00 |               | ATA/ATAPI(ID        | E) 🔽      |                   |            |           |                |                |          |
| Sample                         | Event         | Register            | Data Hi   | Data Lo           | Command    | Drive     | Description    | Time interval  |          |
| 16                             | Wr Sector     | 1F2                 |           | 01                |            | 0         |                | 1.300 us       |          |
| 23                             | LBA Low       | 1F3                 |           | 01                |            | 0         |                | 700 ns         |          |
| 31                             | LBA Mid       | 1F4                 |           | 00                |            | 0         |                | 800 ns         |          |
| 38                             | LBA High      | 1F5                 |           | 00                |            | 0         |                | 700 ns         |          |
| 46                             | Wr Device     | 1F6                 |           | Al                |            | 0         | DEVO           | 800 ns         |          |
| 55                             | Wr Command    | 1F7                 |           | CA                | WRITE DMA  | 0         | DMA command    | 900 ns         |          |
| 84                             | Wr Data       | 1F0                 | 30        | EB                |            | 0         | ASCII=<.       | 2.900 us       |          |
| 87                             | Wr Data       | 1F0                 | 44        | 53                |            | 0         | ASCII=DS       | 300 ns         | <b>_</b> |
| •                              |               |                     |           |                   |            |           |                |                | •        |
|                                |               |                     |           |                   | <b>_</b> 1 | l0 us 📕   | 11.5 us        | 1.5 us 🕻       |          |



## Indicator

Indicator 是用来协助使用者标示信号的工具,主要用于显示信号的时间,让使用 着在分析信号时能够更直观的取得需要的信息。

高级设置

| Indicator 高级设置                        | × |
|---------------------------------------|---|
| <u> 余</u> 老 游标                        |   |
| ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● |   |
|                                       |   |
| □ 只显示时间                               |   |
|                                       | _ |
| · · · · · · · · · · · · · · · ·       |   |

考光标是刻度的零点,可以显示时间或是采样数,当"只显示时间"被勾选时刻度 只会显示时间,往左为负值,往间为正值。也能够用来辅助对齐信号;缺省为触 发光标(T),当触发时刻度自然就会与信号对齐。

#### 分析结果

使用两个通道及两个 Indicator 的情况,标记时间为与缺省光标之间的时间差,可使用不同的参考光标来辅助对齐输入信号。



| Time/Div: 32 us                                                                 |               | 5             |            |               |                       |                   | <b>A</b>       |
|---------------------------------------------------------------------------------|---------------|---------------|------------|---------------|-----------------------|-------------------|----------------|
| Acquired: 10:36:1                                                               | 0.0           | 546.605 us    | 597.805 us | 649.005 us 70 | 0.205 us 751.         | 405 us 802.605 us | 853.805 us     |
|                                                                                 |               |               |            |               |                       |                   |                |
| indicator                                                                       |               | 528,0us 576,0 | us 624,0u  | s 672,0us     | 720 0us               | 768.0us 816.0u    | us 864.0us —   |
| Indica                                                                          | tar           |               |            |               |                       |                   |                |
| ChO                                                                             | 0 1           |               |            |               | 23.44u                | 19.53u            |                |
|                                                                                 |               |               |            |               |                       |                   |                |
|                                                                                 |               |               |            |               |                       |                   |                |
|                                                                                 |               |               |            |               |                       |                   |                |
|                                                                                 |               |               |            |               |                       |                   |                |
|                                                                                 |               |               |            |               |                       |                   |                |
|                                                                                 |               |               |            |               |                       |                   |                |
|                                                                                 |               |               |            |               |                       |                   |                |
|                                                                                 |               |               |            |               |                       |                   |                |
|                                                                                 |               |               |            |               |                       |                   | Ţ              |
|                                                                                 |               |               | i i        | i i           | i                     | i i i             |                |
| Label                                                                           | Channel Value | e 🔟 💷         |            |               |                       |                   |                |
| CH-00         CH-00           CH-01         CH-00           CH-01         CH-00 | AA )Bus(      | ~             |            |               |                       |                   |                |
| Sample                                                                          | indicator     |               | Ch0        |               |                       |                   | ▲              |
| -335872                                                                         |               |               | 0          |               |                       |                   |                |
| 781                                                                             |               |               | 0          |               |                       |                   |                |
| 1562                                                                            |               |               | 1          |               |                       |                   |                |
| 3907                                                                            |               |               | 0          |               |                       |                   |                |
| 4687                                                                            |               |               | 1          |               |                       |                   |                |
| 5469                                                                            |               |               | 0          |               |                       |                   |                |
| 7813                                                                            |               |               | 1          |               |                       |                   |                |
| 8594                                                                            |               |               | 0          |               |                       |                   | <b></b>        |
| •                                                                               |               |               |            |               |                       |                   | •              |
|                                                                                 |               |               |            | <b>n</b>      |                       |                   | - In dass      |
|                                                                                 |               |               |            | 2.387         | ms <mark>–</mark> -2. | .141 ms 🔒 -4      | 1.527 ms 🕒 💷 🔟 |



# IrDA

IrDA(Infrared Data Association)1993 年由 HP、IBM、Sharp、SONY 等五十家厂商 在美国建立标准的红外光无线传输,为点对点的传输方式。

| 参数 | 设 | 置 |
|----|---|---|
|----|---|---|

| IrDA 参数i | 设置 📃 📉          |
|----------|-----------------|
| 参数设置     |                 |
| <b>:</b> | LA通道 CH O 🔽     |
|          |                 |
| 波形颜巴     |                 |
|          | 设置数据的颜色         |
|          | Start 🗾 🔽       |
|          | Data 🗾 🔽        |
|          | STOP            |
|          | Addr 🗾 🔽        |
|          | CRC             |
| 范围选      |                 |
|          | 选择要分析的范         |
|          | 起始位置 结束位置       |
|          | 缓冲区开头 ▼ 缓冲区结尾 ▼ |
|          | 缺省 确定 取消        |

通道设置:设置待测物上,各个讯号端接在逻辑分析仪的通道编号。



| Time/Div:  | 256 u              | 3     | ē          |          |         |       |       |       |       |     |      |          |                   |         |          |                     |                     |           |
|------------|--------------------|-------|------------|----------|---------|-------|-------|-------|-------|-----|------|----------|-------------------|---------|----------|---------------------|---------------------|-----------|
| Acquired:  | 09:20              | :50.0 |            |          | 38.61   | 14 S  | 38,61 | 14S   | 38.61 | 4 S | 38.6 | 15 S     | 38.61             | 5 S<br> | 38.61    | 6S                  | 38.616 S            |           |
| IrDA Data  |                    | ta    |            | Data: 0B |         | Start |       | Data: | 80    |     | Stop |          | Data              | 31      |          | Stop Data: 31       |                     |           |
|            | ŀſ                 | 0A    |            |          |         |       |       |       |       |     | 292  | .49u [18 | 38.49u            |         | 292.485u | 18                  | 8.494               |           |
| l al al al |                    |       |            | 4        |         |       |       |       |       |     |      |          |                   |         |          |                     |                     |           |
| Label      |                    | Cha   | innei .    | <u> </u> |         |       |       |       |       |     |      |          |                   |         |          |                     | _                   | <u>-</u>  |
| CH-C       | 00 CH-4<br>01 CH-4 |       | <b>A</b> ) | Bus I    | rDA(IrD | A)    |       | •     |       |     |      |          |                   |         |          |                     |                     |           |
| Sample     | DO                 | Dl    | D2         | D3       | D4      | D5    | D6    | D7    | D8    | D9  | D10  | D11      | D12               | D13     | D14      | D15                 | ASCII               | ▲         |
| 77173      | 31                 | 31    | 31         | 31       | E2      | 66    | C1    | CO    | CO    | CO  | CO   | A5       | C8                | 01      | OB       | 80                  | 1111.f              |           |
| 77230      | 31                 | 31    | 31         | 31       | 31      | 31    | 31    | 31    | 31    | 31  | 31   | 31       | 31                | 31      | 31       | 31                  | 1111111111111111111 |           |
| 77263      | 31                 | 31    | 31         | 31       | 31      | 31    | 31    | 31    | 31    | 31  | 31   | 31       | 31                | 31      | 31       | 31                  | 111111111111111111  |           |
| 77296      | 31                 | 31    | 31         | 31       | 31      | 31    | 31    | 31    | 31    | 31  | 31   | 31       | 31                | 31      | 31       | 31                  | 11111111111111111   |           |
| 77329      | 31                 | 31    | 31         | 31       | 31      | 31    | 31    | 31    | 31    | 31  | 31   | 31       | 31                | 31      | 31       | 31                  | 11111111111111111   |           |
| 77363      | 31                 | 31    | 31         | 31       | 31      | 31    | 31    | 31    | 31    | 31  | 31   | 31       | 31                | 31      | 31       | 31                  |                     |           |
| 77429      | 31                 | 31    | 31         | 31       | 31      | 31    | 31    | 31    | 31    | 31  | 31   | 31       | 31                | 31      | 31       | 31                  |                     |           |
| 4          |                    |       |            |          | 31      |       |       |       | 01    | 01  |      |          | 01                | 01      | 01       | 01                  |                     |           |
|            |                    |       |            |          |         |       |       |       |       |     |      |          |                   |         |          |                     |                     | <u> </u>  |
|            |                    |       |            |          |         |       |       |       |       | 4   | -20  | 1.376    | ms <mark>B</mark> | -20     | 1.376    | ms <mark>A</mark> B | 0 🕒                 | TL[  1111 |

## 分析结果



# ITU656(CCIR656)

是国际电信联盟无线电通讯组(ITU-R)所制定的影像视讯信号的数据格式。使用 YUV 的颜色编码方式,将影像编码为亮度及色差三个讯号。与 RGB 的编码方式 比起来带宽较小。



| ITU656(CC | IR656)参教设置 X                             |
|-----------|------------------------------------------|
| 参数设置      |                                          |
| <b>P</b>  | —通道设置——————————————————————————————————— |
|           | Clk CH 0 🗧 Data 5 CH 6 🛨 8 💌 Bits        |
|           | Data 0 CH 1 🕂 Data 6 CH 7 🛨              |
|           | Data 1 CH 2 🕂 Data 7 CH 8 🛨              |
|           | Data 2 CH 3 🕂 Data 8 CH 0 🗧              |
|           | Data 3 CH 4 🗧 Data 9 CH 0 🗧              |
|           | Data 4 CH 5 🜩                            |
| 波形颜色      |                                          |
|           | 设置数据的颜色                                  |
|           | SAV CR                                   |
|           | EAV CB                                   |
|           | Blanking Y                               |
| 范围选择      |                                          |
|           | 选择要分析的范围                                 |
|           | 起始位置 结束位置                                |
|           | 缓冲区开头  ▼  缓冲区结尾  ▼                       |
|           |                                          |
|           | 缺省 确定 取消                                 |
|           |                                          |

通道设置:设置待测物上,各个讯号端接在逻辑分析仪的通道编号。

Data Bits: Data 通道的数量,可选择8、10两种模式。



### 分析结果

| Time/Div: | 500 ns               | 3         |          |          |      |            |              |          |      |       |                  |           |                          |             | 8        |
|-----------|----------------------|-----------|----------|----------|------|------------|--------------|----------|------|-------|------------------|-----------|--------------------------|-------------|----------|
| Acquired: | 09:55:5              | 3         | 3.85 us  | 34.65    | us   | 35.45 us   | 3            | 6.25 us  | 37.  | 05 us |                  | 37.8      | 5 us 38.65               | us 39.45 us |          |
|           |                      |           |          |          | ŞA   | /(80): Fel | d 1, elsewit | iere.    |      |       |                  |           | CB: 80                   | Y: 10       | CR: 80   |
|           | 0 Clk                | 500n      | 505n     | 495n     | 500n | 500n       | 500n         | 500n     | 505r |       | 495n             | 5         | 05n 495n                 | 505n 495n   | 505n     |
|           | 1 DataO              |           |          |          |      |            |              |          |      |       |                  |           |                          |             |          |
|           | 2 Data1              |           | 1.0050   |          |      |            |              |          |      |       |                  |           |                          |             |          |
|           | 3 Data2              |           | 1.0050   |          |      |            |              |          |      |       |                  |           |                          |             |          |
| ITU656    | 4 Data2              |           | 1.0050   |          |      |            |              |          |      |       |                  |           |                          |             |          |
|           | 5 Doto4              |           | 1.0050   |          |      |            |              | A 165    | ā    |       |                  |           |                          | 2150        |          |
|           |                      |           | 1.0054   |          |      |            |              | +120-    |      | -     |                  | <br> <br> |                          |             |          |
|           |                      |           | 1,0050   |          |      |            |              |          |      |       |                  | <br>      |                          |             |          |
|           | / Data6              |           | 1.005u   |          |      |            |              | ÷        |      | -     | _                |           |                          |             |          |
| 110656    | 8 Data7              |           |          |          |      | 1.975u     |              |          | 975r |       |                  | -         | 865n                     | 1.145u      |          |
|           |                      |           |          |          |      |            |              | -        |      |       |                  |           |                          |             |          |
| Label     | Channel              |           |          |          |      |            |              |          |      |       |                  |           |                          |             | •        |
| O/TT CH-  | 00 CH-00<br>01 CH-00 | ու թա     | X ITU65  | 5(ITU65) | 5)   | -          |              |          |      |       |                  |           |                          |             |          |
| Sample    |                      | SAV       |          |          | CB   | Y          | CR           | У        | С.   | Y (   | CR               | y E       | AV                       | Information |          |
| 2519      |                      | 80: Field | l, elset | where.   | 80   | 10         | 80           | 10       |      |       |                  | 9         | 8: Error                 |             |          |
| 6736      |                      | 80: Field | l, elset | where.   | 80   | 10         | 80           | 10       |      |       |                  | 9         | 8: Error                 |             |          |
| 10953     |                      | 80: Field | l, elset | where.   | 80   | 10         | 80           | 10       |      |       |                  | 9         | 8: Error                 |             |          |
| 15171     |                      | 80: Field | l, elset | where.   | 80   | 10         | 80           | 10       |      |       |                  | 9         | 8: Error                 |             |          |
| 19388     |                      | 80: Field | l, elset | where.   | 80   | 10         | 80           | 10       |      |       | _                | 9         | 8: Error                 |             |          |
| 23605     |                      | 80: Field | l, elset | where.   | 80   | 10         | 80           | 10       |      | _     | _                | 9         | 8: Error                 |             |          |
| 27822     |                      | 80: Field | l, elset | where.   | 80   | 10         | 80           | 10       |      | _     | _                | 9         | 8: Error                 |             |          |
| 32040     |                      | 80: Field | l, elset | where.   | 80   | 10         | 80           | 10       |      | _     | _                | 9         | 8: Error                 |             |          |
| 36257     |                      | 80: Field | l, elset | where.   | 80   | 10         | 80           | 10       |      |       | _                | 9         | 8: Error                 |             |          |
| 40475     |                      | 80: Field | l, elset | where.   | 80   | 10         | 80           | 10       |      |       |                  | 9         | 8: Error                 |             | <b></b>  |
| •         |                      |           |          |          |      |            |              |          |      |       |                  |           |                          |             |          |
|           |                      |           |          |          |      |            |              | <b>–</b> | 102  | 388   | 0 <mark> </mark> |           | 1023880 <mark>A</mark> B |             | 0 © ]][] |



# JTAG

JTAG(Joint Test Action Group)是一种国际标准测试协议(IEEE 1149.1),主要用于 芯片内部测试,现在多数的高级组件都支持 JTAG 协议,如 DSP、FPGA 等。标 准的 JTAG 总共包括五个信号接口:TCK、TMS、TDI、TDO 和 TRST。其中四 个是输入信号接口和另外一个是输出信号接口。JTAG 最初是用来对芯片进行测 试的,基本原理是在组件内部定义一个 TAP(Test Access Port),通过专用的 JTAG 测试工具对内部节点进行测试。

#### 参数设置

| JTAG 💈                     | 参数设置                                    |          |           | ×        |  |  |  |  |  |
|----------------------------|-----------------------------------------|----------|-----------|----------|--|--|--|--|--|
| 参数i                        | 设置 ———————————————————————————————————— |          |           |          |  |  |  |  |  |
| 7                          | 通道   设置   报告                            |          |           |          |  |  |  |  |  |
|                            | Test Clock (TCK)                        | сно 🗧    |           |          |  |  |  |  |  |
|                            | Test Mode Select (TMS)                  | рн1      |           |          |  |  |  |  |  |
|                            | Test Data Input (TDI)                   | СН 2     | 1         |          |  |  |  |  |  |
|                            | Test Data Output (TDO)                  | сн з 🗧   |           |          |  |  |  |  |  |
|                            |                                         |          |           |          |  |  |  |  |  |
| 波形                         |                                         |          |           |          |  |  |  |  |  |
|                            |                                         |          |           |          |  |  |  |  |  |
| TEST                       |                                         | •        | EXIT1-IR  | <b></b>  |  |  |  |  |  |
| RUN_                       |                                         | •        | EXIT1-DR  | <b></b>  |  |  |  |  |  |
| SELE                       | CT-IR                                   | <b>_</b> | PAUSE-IR  | <b></b>  |  |  |  |  |  |
| SELE                       | CT-DR                                   | <b></b>  | PAUSE-DR  | <b></b>  |  |  |  |  |  |
| CAPT                       | TURE-IR                                 | •        | EXIT2-IR  | <b></b>  |  |  |  |  |  |
| CAPT                       | rure-dr                                 | •        | EXIT2-DR  | <b></b>  |  |  |  |  |  |
| SHIF                       | T-IR                                    | •        | UPDATE-IR | <b>•</b> |  |  |  |  |  |
| SHIF                       | T-DR                                    | •        | UPDATE-DR | <b></b>  |  |  |  |  |  |
| 分析                         | 范围                                      |          |           |          |  |  |  |  |  |
| 选择要分析的范围<br>起始位置      结束位置 |                                         |          |           |          |  |  |  |  |  |
|                            | 缓冲区开头 🗨                                 | 缓冲区结     | 滬 _       |          |  |  |  |  |  |
|                            |                                         |          | 缺省        | 确定 取消    |  |  |  |  |  |

参数设置:参数设置可区分为3个页面(通道、设置及报告)来进行定义。



通道:指定逻辑分析仪与待测物相接之 Channel 编号。TREST pin 可由使用者决定要不要使用,若您将会使用解释指令功能的话,那系统就会根据您所选定的指令数据来决定要不要使用 TREST pin。

设置

| 通道                     | 设置       | 报告           |     |             |     |  |
|------------------------|----------|--------------|-----|-------------|-----|--|
| _选择:                   | 显示测i     | 式数据———       | ☑角  | 释释指令 —————— |     |  |
| <ul> <li>Те</li> </ul> | est Data | Input (TDI)  | ID  | Name        | Len |  |
| <u>с</u> т.            |          |              | 000 | ARM7~ARM9   | 4   |  |
|                        | est Data | Output (TDO) | 001 | ARM10       | 4   |  |
| 一测试                    | 数据位      | 顺序           | 002 | ARM11       | 5   |  |
| LSB F                  | =irst    | •            |     |             |     |  |
|                        |          |              |     | 刷新          | 编辑  |  |

选择显示测试数据(Test data):使用者可选择当 TAP state 的状态为 Shift-IR、Shift-DR。将会以 16 进制显示 TDI 或 TDO 的数据。

测试数据(Test data)位顺序:因JTAG 在数据传输时,数据长度可能不定。因此,使用者可指定解释 TDI/TDO 时,数据是 LSB First 或 MSB First。

解释指令: 若您打开解释指令功能,将可以看到一个指令列表。JTAG protocol 分析将会在 Update-IR 时,将指令寄存器(Instruction register)的内容之指令显示出来。用户可选择"编辑..."功能,使用编辑器自行添加修改指令列表文件 (JtagInst.txt)。修改完成后,再按一次"刷新",就可以更新指令列表。

Acute Jtag Instruction table(JtagInst.txt):此文档由 Jtag DLL 主动提供,使用者可根据自己的需求重新编辑此档。本公司亦支持 BSDL 格式,您可直接将 BSDL file 加入,可省去编辑指令数据的时间,详细说明请看本单元最后附录 Acute Jtag Instruction table 语法说明。

报告: 启用报告过滤功能,只要勾选需显示于报告窗口内的项目。



| 通道   设置   报告             |                    |
|--------------------------|--------------------|
| Show the state in report |                    |
| Test-Logic-Reset         |                    |
| Run-Test/Idle            |                    |
| Select-DR-Scan           |                    |
| Select-IR-Scan           |                    |
| Capture-DR               |                    |
| Capture-IR               | <b>_</b>           |
| Show TDI or TDO          | C Show TDI and TDO |

Show TDI or/and TDO: 若选择"Show TDI and TDO"时,报告窗口将会同时显示

TDI 与 TDO。

### 分析结果

Altera EPM3256AT144 Programming 信号解析示意图

| Time/Div: | 4 us                 |             | 504 mz       | 10 51 mm | 10 517.    |       | 10 522    | 101    | 52 mm  | 10 525 - | - 10    | E42 ms | 10 540 |                       |     |
|-----------|----------------------|-------------|--------------|----------|------------|-------|-----------|--------|--------|----------|---------|--------|--------|-----------------------|-----|
| Acquirea: | 08:00:00             | J           | 504 ms       | 10.51 ms |            | 1.1.  | 10.525 ms |        | 1.1.1  | 10.300   | 1.1.1   |        | 10.545 |                       |     |
|           |                      | Ru          | un-Test/Idle |          | Select-DR- | 5can  | Select-I  | R-Scan | Captu  | ure-IR   |         | TD     | 1:1    |                       | -   |
|           | от                   | CK 4,12u    | 4.22u        | 4.12u    | 4.22u      | 4.12u | 4.24u     | 4.12u  | 4.22u  | 4.12u    | 4.24u   | 4.12u  | 4.22u  |                       |     |
| Jtag bus  | 1 T                  | MS          | 8.34u        |          | 16.7u      |       |           |        | -      | -        |         |        |        |                       |     |
|           | 2 T                  |             |              |          |            |       |           |        |        |          |         | 8.     | 34u    |                       |     |
|           | зт                   | DQ          |              |          |            |       |           |        |        |          |         |        |        |                       |     |
|           | JTAG 4 T             | RE          |              |          |            |       |           |        |        |          |         |        |        |                       |     |
|           |                      |             |              |          |            |       |           |        |        |          |         |        |        |                       |     |
|           |                      |             |              |          |            |       |           |        |        |          |         |        |        |                       |     |
|           |                      |             |              |          |            |       |           |        |        |          |         |        |        |                       | •   |
| Label     | Ch                   | anr         |              |          |            |       |           |        |        |          |         |        |        | •                     |     |
|           | 00 CH-00<br>01 CH-00 |             | Jtag bus()   | JTAG)    | •          |       |           |        |        |          |         |        |        |                       |     |
| Sample    |                      | TAP state   |              | Instru   | ction reg  | TDI   | /TDO De   | ita    |        |          |         |        |        |                       |     |
| 921651    |                      | Run-Test/Id | lle          |          |            |       |           |        |        |          |         |        |        |                       | _   |
| 925625    |                      | Select-DR-S | ican         |          |            |       |           |        |        |          |         |        |        |                       |     |
| 926042    |                      | Select-IR-S | ican         |          |            |       |           |        |        |          |         |        |        |                       |     |
| 926460    |                      | Capture-IR  |              |          |            |       |           |        |        |          |         |        |        |                       |     |
| 926877    |                      | Shift-IR    |              |          |            | TDI:  | 1         |        |        |          |         |        | _      |                       |     |
| 928130    |                      | Exitl-IR    |              |          |            |       |           |        |        |          |         |        |        |                       |     |
| 928547    |                      | Update-IR   |              | SCAN_N   | (2)        |       |           |        |        |          |         |        |        |                       | _   |
| 928965    |                      | Select-DR-S | ican         |          |            |       |           |        |        |          |         |        |        |                       | -   |
|           |                      |             |              |          |            |       |           |        |        |          |         |        |        | •                     |     |
|           |                      |             |              |          |            |       | A         | -16    | D ns 📕 | 3        | 3.32 us | A<br>B | 3.48 u | is <mark>O</mark> III | 111 |

ARM7 Read IDCODE Jtag 信号解析示意图



| Time/Div: 4 us<br>Acquired: 08:00:0 | U. 504         | 4.8 us     | 511.2 us | 517.      | .6 us    | 524 us   | . 53  | 30.4 us | 536,8 ι | ıs !    | 543.2 us | 549.6    | us į   |       |
|-------------------------------------|----------------|------------|----------|-----------|----------|----------|-------|---------|---------|---------|----------|----------|--------|-------|
|                                     | Select-DR-Scan | Select-IR- | -Scan    |           | Test-Log | ic-Reset |       |         | Run-Te  | st/Idle |          | Select-D | R-Scan |       |
| от                                  | CK 4.12u       | 4.22u      | 4.12u    | 4.24u     | 4.12u    | 4.22u    | 4.12u | 4.22u   | 4.12u   | 4.24u   | 4.12u    | 4.22u    | 4.12u  |       |
| 1 T                                 | IMS            |            |          |           |          |          |       | 16.7    | u       |         |          |          |        | i     |
| 2 T                                 | DI             |            |          |           |          |          |       |         |         |         |          |          |        |       |
| зт                                  | DC             |            |          |           |          |          |       |         |         |         |          |          |        |       |
| 4 T                                 | RE             |            |          |           |          |          |       |         |         |         |          |          |        | i     |
|                                     |                |            |          |           |          |          |       |         |         |         |          |          |        |       |
|                                     |                |            |          |           |          |          |       |         |         |         |          |          |        |       |
|                                     |                |            |          |           |          |          |       |         |         |         |          |          |        | Ţ     |
| Label Ch                            | namr 💶 📘       |            |          |           |          |          |       |         |         |         |          |          | •      |       |
| ⊙/Ⅲ CH-00 CH-00<br>CH-01 CH-00      | <b></b>        | Jtag bus(J | TAG)     | •         |          |          |       |         |         |         |          |          |        |       |
| Sample                              | TAP state      |            | Instru   | uction re | eg T     | DI/TDO D | ata   |         |         |         |          |          |        |       |
| -63                                 | Run-Test/Id    | le         |          |           |          |          |       |         |         |         |          |          |        |       |
| 153                                 | Select-DR-Se   | can        |          |           |          |          |       |         |         |         |          |          |        |       |
| 571                                 | Select-IR-Se   | can        |          |           |          |          |       |         |         |         |          |          |        |       |
| 988                                 | Test-Logic-H   | Reset      |          |           |          |          |       |         |         |         |          |          |        |       |
| 23964                               | Run-Test/Id.   | Le         |          |           |          |          |       |         |         |         |          |          |        |       |
| 24799                               | Select-TP-S    | -an        |          |           |          |          |       |         |         |         |          |          |        |       |
| 25634                               | Test-Logic-H   | Reset      |          |           |          |          |       |         |         |         |          |          |        |       |
| •                                   |                |            |          |           |          |          |       |         |         |         |          |          | •      | Ľ     |
|                                     |                |            |          |           |          |          | -16   | 50 ns 📕 |         | 3.32 us | A        | 3.48     | us 🕒 🛙 | [ 111 |

#### 附录

Acute Jtag Instruction table 语法说明(JtagInst.txt)

本文档所使用的数字,皆为16进制表示。

##:双井字号即为批注。

#ID:指令列表编号,范围是00-FF。建立时必须循序建立,若有跳号不连续即 视为结束。

#NAME:本指令集名称,此名称将会显示于设置画面之指令列表上,最长为 32 bytes。

#LENGTH:指令长度,填入指令长度,以 bit 为单位。

#CAPTURE:指令 Capture 码,此数值将会于 Capture-IR 时,填入指令缓存器 (Instruction register)。

#INST:指令表,第一个参数是指令码,第二个参数是指令名称,最长为 32 bytes。当#INST:后面没有参数时,就表示指令结束。

#TRST:设置是否需要 TREST 信号,如果需要就输入1。不需要的话填0或不



填都可以。

**#BSDL**:导入 BSDL file,填写 BSDL file 完整路径即可。BSDL file 解析的项目, 与上述 1-6 一样。

范例:#ID:00

#NAME:ARM7-ARM9

#LENGTH:4

#CAPTURE:1

#INST:0, EXTEST

#INST:2, SCAN\_N

#INST:3, SAMPLE/PRELOAD

#INST:4, RESTART

#INST:5, CLAMP

#INST:7, HIGHZ

#INST:9, CLAMPZ

#INST:C, INTEST

#INST:E, IDCODE

**#INST:F, BYPASS** 

#INST:

#ID:01

#BSDL:C:\3256at144\_1532.bsd



# LCD1602

是一种常用的液晶显示接口,用来显示 5\*8 或是 5\*11 的字形符号 根据目前 LCD 的规格,有发展出许多相似类型。虽然 LCD 各有不同特点,但基本原理都是相同的。LCD1602 利用 11 条信号线,故发送串行信号传输效率较高。LCD1602 所 传送之频率并无特定范围。

#### 参数设置

| LCD1602 着                   | 》數设置 · · · · · · · · · · · · · · · · · · · | × |
|-----------------------------|--------------------------------------------|---|
| 波形设置                        |                                            | - |
| -2                          | _通道选择                                      |   |
| :7                          | RS CH 0 + DB7 CH 3 + DB3 CH 7 +            |   |
|                             | RW CH1 + DB6 CH4 + DB2 CH8 +               |   |
|                             | E CH 2 🛨 DB5 CH 5 🕂 DB1 CH 9 🛨             |   |
|                             | DB4 CH 6 + DB0 CH 10 +                     |   |
|                             | _选择模式                                      |   |
|                             | ● 8条数据线 ● 4条数据线 🔽 合并相同的指令                  |   |
| 波形颜色                        |                                            |   |
|                             | 设置每个命令的颜色                                  |   |
| -                           | SCREEN CLEAR                               |   |
|                             | CURSOR RETURN V DDRAM AD SET               |   |
|                             | INPUT SET                                  |   |
|                             | DISPLAY SWITCH DATA WRITE                  |   |
|                             | SHIFT DATA READ                            |   |
| - the second set of a limit | BUSY/AD READ CT                            |   |
| 范围选择                        |                                            |   |
| <b>80</b>                   | 选择要分析的泡围                                   |   |
| 17 T                        |                                            |   |
|                             |                                            |   |
|                             | 一 缺省                                       |   |

通道选择:设置待测物上各个信号端接在逻辑分析仪的通道编号。

选择模式:根据数据传送位数,选择数据线。

合并相同的指令:分析后的数据做命令转换时,若是相同时就进行合并。



### 分析结果

| Time/Div: | 40 us        |        |          |              |       |       |                  |        |           |         |                  |         |            |       |         |            |          | A     |            |
|-----------|--------------|--------|----------|--------------|-------|-------|------------------|--------|-----------|---------|------------------|---------|------------|-------|---------|------------|----------|-------|------------|
| Acquired: | 08:00:0      | 0.0    |          | -64 us       |       | . 🕹   |                  | 64 us  |           | 128 u   | s<br>            | 192 u   | s          | 256 u | s<br>   | 320 us     | 3        | 84 us |            |
|           | O RS         |        | Cur      | or Return:0  | 2     | CG    | RAM/DD           | RAM Da | ata Write | :56 📿 📿 | SRAM/D           | DRAM Da | ita Write: | 69 CG | RAM/DDR | .AM Data V | vrite:6F |       |            |
|           | 1 RW         | r      |          |              |       |       |                  |        | -         |         |                  |         |            |       |         | _          |          |       |            |
|           | 3 DB         | 7      |          |              |       |       | 61.5u            |        | 62.4u     | _       | 61.4u            |         | 62.4u      | -     | 61.4u   | 62         | .4u      | 61.5u |            |
| LCD1602   | 4 DB         | 5      |          |              |       |       |                  |        |           |         | 371.5u           |         |            |       |         |            | 1        |       |            |
|           | 5 DB<br>6 DB | 4      |          |              |       |       | 123.8u<br>123.8u |        |           |         |                  |         | 247.7u     |       |         |            |          |       |            |
|           | 7 DB         | 3      |          |              | -<br> |       | 122.0            |        |           |         | 122.0            |         |            |       | 422.0   |            | -        |       |            |
|           | 9 DB         | -<br>1 |          |              |       |       | 123.8u<br>123.8u |        |           |         | 123.9u<br>123.9u |         |            | _     | 123.80  |            |          |       |            |
| Lo        | 0 D1602      | 30     |          |              |       | -     |                  |        |           |         |                  |         | 247.7u     |       |         |            | 1        |       |            |
| Label     | Cha          | nnel   | •        |              |       | i.    | -                |        | -         |         |                  |         |            |       |         |            |          |       |            |
| O/TT CH-  | 00 CH-00     | TT.    | Bus      | <br>LCD1602( | (LCD1 | 1602) | -                |        |           |         |                  |         |            |       |         |            |          |       | _          |
| Sample    | 011-00       | Comm   | and      |              |       | Data  |                  |        |           |         |                  |         |            |       | ASCII   |            |          |       |            |
| -79875    |              | Curs   | or Retur | n            |       | 02    |                  |        |           |         |                  |         |            |       |         |            |          |       |            |
| 0         |              | CGRA   | M/DDRAM  | Data Wri     | te    | 56 69 | 96F3             | 3A 20  | 33 2E     | 33 38   | 20 50            | 6 20 2  | 0 20 2     | 0 20  | Vio:    | 3.38 V     |          |       | - 1        |
|           |              |        |          |              |       |       |                  |        |           |         |                  |         |            |       |         |            |          |       |            |
| L         |              |        |          |              |       |       |                  |        |           |         |                  |         |            |       |         |            |          |       | - 1        |
|           |              |        |          |              |       |       |                  |        |           |         |                  |         |            |       |         |            |          |       |            |
|           |              |        |          |              | 1     |       |                  |        |           |         |                  |         |            |       |         |            |          |       | - <b>-</b> |
|           |              |        |          |              |       |       |                  |        | -         | _       |                  |         | _          |       |         |            |          |       |            |
|           |              |        |          |              |       |       |                  |        |           | A       | 40               | )7.7 us | в          | 6.9   | 912 ms  | B          | 6.505    | ms 🕒  | TT    TT   |



# LIN

随着汽车市场的蓬勃发展,车用电子的传输控制也越来越重要; CAN 和 LIN 都 是车用电子里常见的传控接口。而 LIN BUS 是车用电子中为因应低成本趋势而 产生的一种传控接口,主要是使用在低速的外围装置,如车门控制、车窗控制等。

参数设置

| LIN 参数设 | 置                                                        |
|---------|----------------------------------------------------------|
| 参数设置    |                                                          |
|         | 版本选择<br>CLIN 2.1                                         |
|         | LA通道 CH 0 ← 波形中显示刻度<br>波特率 AUTO                      bps |
| 波形颜色    |                                                          |
|         | <ul> <li></li></ul>                                      |
| 范围选择    | 选择要分析的范围<br>起始位置    结束位置<br>缓冲区开头    缓冲区结尾  ▼            |
|         | 确 定 取 消                                                  |



版本选择:可选择不同版本规范去做 LIN 信号分析。 Checksum 校验模式:可选择计算检查码的模式。 LA 通道:选择待测物接在逻辑分析仪的的通道编号。 波形中显示刻度:在波形上面显示刻度。 鲍率:选择待测讯号的鲍率。

| カタネイ | 分 | 析 | 结 | 果 |
|------|---|---|---|---|
|------|---|---|---|---|

| Time/Div: 400 us           |                  | D          |       |                  |                         |                |          |
|----------------------------|------------------|------------|-------|------------------|-------------------------|----------------|----------|
| Acquired: 08:00:0          | 0.0 2.6          | 42 ms 3.28 | 32 ms | 3.922 ms 4.56    | 2 ms 5.202 ms 5.842 m   | is 6.482 ms    |          |
| LIN Bus O                  |                  | Break      | Sync  | ID:31 P:2 Ide    |                         | <b></b>        |          |
| CH-00 CH-00<br>CH-01 CH-00 |                  | LIN)       | •     |                  |                         |                |          |
| Sample                     | Event Type       | PID(ID+P)  | ID    | Parity           | Data                    | Checksum(h)    | ASCII 🔺  |
| 2085                       | Wakeup           |            |       |                  |                         |                |          |
| 5002                       | LIN Frame        | B1         | 31    | 2                | EA 8B 48 3F ED 9C B5 A7 | 1A             | H?       |
| 18753                      | LIN Frame        | 25         | 25    | 0                | 31 B4 2C 3F             | AE             | 1.,?     |
| 28336                      | Diagnostic Frame | 3C         | 3C    | 0                | OO FF FF FF FF FF FF FF | 00             |          |
| 41253                      | Wakeup           |            |       |                  |                         |                |          |
| 44170                      | LIN Frame        | B1         | 31    | 2                | EA 8B 48 3F ED 9C B5 A7 | 1A             | H?       |
| 57921                      | LIN Frame        | 25         | 25    | 0                | 31 B4 2C 3F             | AE             | 1.,?     |
| 67504                      | Diagnostic Frame | 30         | 30    | 0                | 00 FF FF FF FF FF FF FF | 00             |          |
| 80421                      | Wakeup           |            |       |                  |                         |                |          |
| 83338                      | LIN Frame        | B1         | 31    | 2                | EA 8B 48 3F ED 9C B5 A7 | 1A             | H?       |
| 97088                      | LIN Frame        | 25         | 25    | 0                | 31 B4 2C 3F             | AE             | 1.,?     |
| 106672                     | Diagnostic Frame | 30         | 30    | 0                | 00 FF FF FF FF FF FF FF | 00             |          |
| 119589                     | Wakeup           |            |       |                  |                         |                |          |
| 122506                     | LIN Frame        | B1         | 31    | 2                | EA 8B 48 3F ED 9C B5 A7 | 1A             | H? 🗸     |
| •                          |                  |            |       |                  |                         |                |          |
|                            |                  |            |       | <mark>A</mark> 2 | 3.445 ms 📙 🛛 28.688 ms  | <b>B</b> 5.242 | ms 🕒 🖽 🏥 |



# Line Decoding

数字信息皆可被编码为数字信号。而特定编码技术的选择,端赖于符合特殊的需 求与可利用的媒介和通讯装置。最简易的数字数据之数字编码方式是指定不同电 压准位代表2进制数0和1。而较复杂的编码机制通常是为了改善效能。

常见的编码方式如下:

NRZI(Non return to zero, inverted):翻转不归零制,是2进制信号,此信号对应于实体性发送,以此欲于一些发送媒体(介质)。有以下两种模式:

NRZI(Transition occurs for a one): 遇「1」则是变更原有准位,由高变低或由低 变高。遇「0」则保持原有的准位而不改变。例如:一个数据串流包含的位依序 为"110100110",假设初始状态为「1」,通过编码则为"011000100"。



NRZI(Transition occurs for a zero): 遇「0」则是变更原有准位,由高变低或由低变高。遇「1」则保持原有的准位而不改变。例如:一个数据串流包含的位依序为"001011001",假设初始状态为「1」,通过编码则为"011000100"。



Manchester: 曼彻斯特编码是许多局网采用的编码技巧。其主要特性是无论数据 是 0 或是 1,在每一个位时间的中央都有电位的转换。有以下三种模式: Manchester(Thomas):由正电位到负电位代表「1」,而由负电位到正电位则代 表「0」。例如:一个数据串流包含的位依序为"0010110010",通过编码则为"01





"10 10 01 10 01 01 10 10 01 10" •



Differential Manchester: 差动式曼彻斯特编码技巧的主要特色和曼彻斯特 (IEEE802.3)编码相同。在每一个位时间中间都有电位的转换。不同的是,在差动 式曼彻斯特编码中,除了位时间中间的电位转换外,在位时间一开始时也有电位 转换则代表「0」,否则代表「1」。换句话说,如果数据值是「0」,则在位时 间的开始及中间都有电位的转换。如果数据值是「1」,则只在位时间的中间有 电位的转换。例如:一个数据串流包含的位依序为"0011101011",通过编码则为 "10 10 01 10 01 01 10 10 01 10"。



双相符号编码,是许多数字录音采用的编码技巧。把数据位拆成两个部分,若数据为1时,则拆成01或10。若数据为0时,则为00或11。每个数据位结束时必须反向,这样接收端就能以接收到的信号自己做信号同步的工作。例如:一个数据串流包含的位依序为"0010110010",通过编码则为"11001010101010010101010010"。





#### Miller

Miller 编码应用在 RFID 的数据处理系统中。若数据为 1 时数据中间会由高电位转低电位或是由低电位转高电位。若数据为 0 时则保持为原来的电位,但是当数据为连续的 0 时则相邻的 0 之间会发生电位转换。例如:一个数据串流包含的位依序为"0010110010",通过编码则为"11 00 01 11 10 01 11 00 01 11。



#### **Modified Miller**

Modified Miller 编码应用在 RFID 的数据处理系统中。Idle 时会保持在高电压, 当数据为0时会在数据起始点出现一个脉冲。若数据为1时会再数据中间出现一 个脉冲,但是当一个数据0紧接在数据1的后面时则不会动作,例如:一个数据 串流包含的位依序为"1011001010",通过编码则如下图所示。



#### 参数设置



| Line Deco | ding 參數设置                         |               |                   | ×  |
|-----------|-----------------------------------|---------------|-------------------|----|
| 解碼選擇      |                                   | 通道设置          |                   |    |
| <b>P</b>  | 选择LA撷取到的波形格式, 以及<br>设置相关参数        |               | Data Channel CH 0 |    |
|           | NRZI(Transition occurs for a one) | 分析范围          |                   |    |
|           |                                   | <b>.</b>      | 选择要分析的范围          |    |
|           | 1 1 0 1 0 0 1 1 0                 | i <b>⊷</b> +i | 起始位置              |    |
|           | 🔽 Show Unknown 📃 Show Bus         |               | 缓冲区开头             | -  |
|           | 🔲 Auto-Detect Data Rate           |               | 结束位置              |    |
|           | Data Rate 1 MHz                   |               | 缓冲区结尾             | •  |
|           |                                   |               | 確定                | 取消 |

解碼选择:选择编码的格式,以及设置相关参数。

NRZI(Transition occurs for a one)

NRZI(Transition occurs for a zero)

Manchester(Thomas)

Manchester(IEEE802.3)

**Differential Manchester** 

Biphase Mark Decode

Miller

Modified Miller

Show Unknown:显示未知的信号。

Show Bus:显示通讯组。

Auto-Detect Data Rate: 设置对方的波特率或者由系统自动侦测。

通道设置:设置待测物上的信号端接在逻辑分析仪的通道编号。

范围选择:选择分析的范围,从起始位置到结束位置之间作分析。



# Line Encoding

数字信息皆可被编码为数字信号。而特定编码技术的选择,端赖于符合特殊的需 求与可利用的媒介和通讯装置。最简易的数字数据之数字编码方式是指定不同电 压准位代表2进制数0和1。而较复杂的编码机制通常是为了改善效能。

常见的编码方式如下:

#### NRZI(Non return to zero, inverted)

翻转不归零制,是2进制信号,此信号对应于实体性发送,以此欲于一些发送媒体(介质)。有以下两种模式:

### NRZI(Transition occurs for a one)

遇「1」则是变更原有准位,由高变低或由低变高。遇「0」则保持原有的准位而 不改变。例如:一个数据串流包含的位依序为"110100110",假设初始状态为「1」, 通过编码则为"011000100"。



#### NRZI(Transition occurs for a zero)

遇「0」则是变更原有准位,由高变低或由低变高。遇「1」则保持原有的准位而 不改变。例如:一个数据串流包含的位依序为"001011001",假设初始状态为「1」, 通过编码则为"011000100"。



Manchester



曼彻斯特编码是许多局网采用的编码技巧。其主要特性是无论数据是0或是1, 在每一个位时间的中央都有电位的转换。

有以下三种模式:

#### Manchester(Thomas)



#### Manchester(IEEE802.3)



#### **Differential Manchester**

差动式曼彻斯特编码技巧的主要特色和曼彻斯特(IEEE802.3)编码相同。在每一个 位时间中间都有电位的转换。不同的是,在差动式曼彻斯特编码中,除了位时间 中间的电位转换外,在位时间一开始时也有电位转换则代表「0」,否则代表「1」。 换句话说,如果数据值是「0」,则在位时间的开始及中间都有电位的转换。如 果数据值是「1」,则只在位时间的中间有电位的转换。例如:一个数据串流包 含的位依序为"0011101011",通过编码则为"10 10 01 10 01 01 10 01 10"。





#### **AMI**(Alternate Mark Inversion)

三阶电流脉冲,信号通常区分成三种电位状态:「正电位」、「零电位」、「负 电位」。

传输方式有以下四种:

AMI(Standard)遇「0」则是准位0,遇「1」则是+/-准位互换。



#### AMI(B8ZS)

Bipolar-8-Zero Substitution 双极信号 8 个 0 替代。基本上像 AMI 方式,但是当遇 到连续 8 个 0 时会作特殊处理。例如:若 1 的状态为+,则将 00000000 转换成 000+-0-+; 若 1 的状态为-,则将 00000000 转换成 000-+0+-。

B = 有效双极信号。



#### AMI(HDB3)

High Density Bipolar 3 高密度双极信号-3个0。基本上像 AMI 方式,但是当遇 到连续4个0时会作特殊处理。例如:若1的状态为+,则将0000转换成000+ 或是-00-(依奇偶状况决定);若1的状态为-,则将0000转换成000-或是+00+(依 奇偶状况决定)。所谓奇偶状况就是第一次用000+而第二次用-00-,依此类推。





### MLT-3

Multilevel Transmission 3 多阶传输 3。遇「0」则不变化电位状态,遇「1」则依照后面顺序(0、+、0、-)变换电位状态。



#### Pseudoternary

伪三码。遇「0」则是+/-准位互换,连续遇0时交替切换,遇「1」则是准位0。



### **CMI(Coded Mark Inversion)**

运用在光纤通信。遇「0」则用"01"表示,遇「1」则是交替地用"00"和"11"表示。



#### **Biphase Mark**

双相符号编码,是许多数字录音采用的编码技巧。把数据位拆成两个部分,若数据为1时,则拆成01或10。若数据为0时,则为00或11。每个数据位结束时必须反向,这样接收端就能以接收到的信号自己做信号同步的工作。例如:一个数据串流包含的位依序为"0010110010",通过编码则为"11001010101010010101010010"。





#### Miller

Miller 编码应用在 RFID 的数据处理系统中。若数据为 1 时数据中间会由高电位转低电位或是由低电位转高电位。若数据为 0 时则保持为原来的电位,但是当数据为连续的 0 时则相邻的 0 之间会发生电位转换。例如:一个数据串流包含的位依序为"0010110010",通过编码则为"11 00 01 11 10 01 11 00 01 11。。



**Modified Miller** 

Modified Miller 编码应用在 RFID 的数据处理系统中。Idle 时会保持在高电压, 当数据为 0 时会在数据起始点出现一个脉冲。若数据为 1 时会再数据中间出现一 个脉冲,但是当一个数据 0 紧接在数据 1 的后面时则不会动作,例如:一个数据 串流包含的位依序为"1011001010",通过编码则如下图所示。



### 参数设置



| Line Encoding 參數设置                | ×                 |
|-----------------------------------|-------------------|
| 解碼選擇                              | 通道设置              |
| NRZI(Transition occurs for a one) | Data Channel CH 0 |
|                                   | 分析范围              |
|                                   | 选择要分析的范围          |
| 1 1 0 1 0 0 1 1 0                 | 起始位置              |
|                                   | 缓冲区开头             |
| 🗹 Auto-Detect Data Rate           | 结束位置              |
| Data Rate 1 MHz                   | 缓冲区结尾             |
|                                   |                   |
|                                   | 确定 取消             |

解碼选择:选择编码的格式,以及设置相关参数。

NRZI(Transition occurs for a one)

NRZI(Transition occurs for a zero)

Manchester(Thomas)

Manchester(IEEE802.3)

**Differential Manchester** 

AMI(Standard)

AMI(B8ZS)

AMI(HDB3)

Pseudoternary

MLT-3

CMI

Biphase Mark Encode

Miller

Modified Miller

Auto-Detect Data Rate: 设置对方的波特率或者由系统自动侦测。

通道设置:设置待测物上的信号端接在逻辑分析仪的通道编号。

分析范围:选择分析的范围,从起始位置到结束位置之间作分析。



## Lissajous

Lissajous figure(curve),由美国数学家鲍迪奇(Nathaniel Bowditch)在1815年首先 研究这种曲线,后来法国数学家李赛育(Jules Antoine Lissajous)在1857年独立研 究出来。由其轴互相垂直的两个正弦曲的交点所产生的一个封闭曲线。在两条曲 线的频率和相位一致的情形,所得到的是同坐标轴成45度(和225度)的直线。 在幅值和频率一致而有不同的相位关系时,除了相位差是90度(或270度)时产 生中心在原点的圆外,都形成具有不同角位置的椭圆。这种曲线在电子学中有特 殊意义,它可以在示波器上显示出来,根据曲线的形状可以辨识未知电子信号的 特性。

如果将 CH1 的输入信号做为水平(X)轴, CH2 的输入信号做为垂直(Y)轴,直接 在画面上显示轨迹。若 X 轴与 Y 轴都输入正弦波,且频率成整数比时,画面将 显现出椭圆形。接下来我们使用虚拟波形产生器产生正弦波当例子(请勿将逻辑 分析仪和电脑连接,直接执行 LA Viewer 进入 Demo Mode)。在硬件菜单上选择 「虚拟波形产生器」,在 CH0-CH7 及 CH8-CH15 的待测物选项中选择 Sine,待 测物频率选择 20MHz。



| 通道组别:       | 待测物选项:       |   | 待测物频率 | 5:  |
|-------------|--------------|---|-------|-----|
| CH0 - CH7   | Sine         | • | 20    | MHz |
| CH8 - CH15  | Sine         | • | 20    | MHz |
| CH16 - CH23 | Down Counter | • | 18    | MHz |
| CH24 - CH31 | Random data  | • | 17    | MHz |
| СН32 - СН39 | Random data  | • | 16    | MHz |
| CH40 - CH47 | Down Counter | • | 15    | MHz |
| CH48 - CH55 | Random data  | • | 14    | MHz |
| CH56 - CH63 | Up Counter   | - | 13    | MHz |

在信号名称栏中,将CH0-CH7及CH8-CH15合并成一个信号组,名称分别为X 及Y。合并时,CH7-CH15必须在MSB,CH0-CH8必须在LSB。在信号名称栏 的X上按鼠标左键两下或是按鼠标右键一下选择设置信号参数。波形格式选择 Analog(2'Comp),波形颜色选择浅蓝色。Y的波形格式一样选择Analog(2'Comp), 波形颜色选择绿色。

| 设置信号参                                      | 数                                                      | × |
|--------------------------------------------|--------------------------------------------------------|---|
| 信号名称 _                                     |                                                        |   |
| <mark>/</mark>                             | 输入一信号名称,长度不能超过31个字<br> X                               |   |
| 通道和颜色                                      | <u></u>                                                |   |
|                                            | 设置LA接在待测物上的通道编号,以及<br>设置该信号的波形颜色                       |   |
| CHO L                                      | 通道编号 数值型态                                              |   |
|                                            | 7 Analog(2' Comp.)                                     | - |
|                                            | 波形颜色 Lime                                              | • |
| 信号形式 _                                     |                                                        |   |
| om<br>eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee | 选择此信号的形式,如果你选择的形式<br>是LA以外的插件总线分析时,可按高级<br>设置钮,做进一步的设置 |   |
|                                            | □ 反相显示 □ 显示格雷码 □ 同时显示总线分析与波形                           |   |
|                                            | LA 高级设                                                 | ₹ |
|                                            | 确定                                                     | 肖 |



| X 7.0<br>Y 15.8 |  |  |  |
|-----------------|--|--|--|
| Label Channel   |  |  |  |

按下「确定」后,CH1及CH2将显示出正弦波形。

在信号菜单上选择「新增总线分析」。

| 新増总线分析                                  | 所 <mark>×</mark>                |
|-----------------------------------------|---------------------------------|
| 信号名称 _                                  |                                 |
| <mark>∕</mark>                          | 输入一信号名称,长度不能超过31个字<br>Lissajous |
| 通道和颜色                                   |                                 |
| 0H3 <b>JU</b><br>0H5 <b>JU</b><br>0H6JU | 设置该信号的波形颜色                      |
| 信号形式                                    |                                 |
| o.ur                                    | 选择此信号的分析方式,可按高级设置<br>钮,做进一步的设置  |
| ~~                                      | ☑ 同时显示分析内容与波形                   |
|                                         | Lissajous 🔹 高级设置                |
|                                         | 确定取消                            |

在信号形式中选择「Lissajous」,按下「高级设置」。







模式:设置坐标模式,包括 XY 坐标及 IQ 坐标。

**位数:**设置数据的位数。

透明度:设置图形在逻辑分析仪窗口里显示的外观。

图形颜色: 设色图形的颜色。这里我们选择红色。

按下「确定」后,图形会在 LA Viewer 的右下角出现。因为两个通道的频率成整数比,所以画面将显现出红色椭圆形。





将鼠标光标停留在红色椭圆形上按鼠标右键,会出现如下的功能选项。

关闭视窗 内容…

关闭窗口:结束波形显示。

内容:回到 XY 设置。


# LPC

LPC(Low pin count Bus)总线 '由 Intel 制定其规格 '用以取代主机板上的 ISA bus。

主要应用于 Legacy I/O devices 数据传输用途。

### 参数设置

| LPC 参数   | 设置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×        |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 通道说      | 发定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 1        | LFRAME#     CH 1 <ul> <li>LAD[2]</li> <li>CH 4</li> <li>LCLK</li> <li>CH 0</li> </ul> LAD[0]     CH 2 <ul> <li>LAD[3]</li> <li>CH 5</li> <li>T</li> <li>Data Edge</li> <li>Falling</li> </ul> LAD[1]     CH 3 <ul> <li>CH 3</li> <li>CH 5</li> <li></li></ul> |          |
|          | Show the field in report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|          | START         CYCLETYPE+DIR         SIZE         TAR         ADDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 波形商      | (一) 一) 一) () () () () () () () () () () () () ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| (A) ( 2) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u> |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u> |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u> |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>_</b> |
| 分析落      | 范围                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|          | 选择要分析的范围<br>起始位置     结束位置<br>缓冲区开头  ▼   缓冲区结尾  ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|          | 缺省                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .消       |

LCLK: LPC 数据传输之 Clock。

Data Edge: 设置 LCLK 上升沿或下降沿时分析数据。

LFRAME#: 标示出每个 Frame 传输周期的开始位置或中断 Frame 传输之用。

LAD[0-3]:数据总线用以传输命令、地址和数据之用。

Show the field in report: 启用报告过滤功能,只要勾选需显示于报告示窗内的项目。



I/O Read Cycle 信号

| Time/Div: 30 ns<br>Acquired: 08:00:   | <b>i i</b>    | 50 ns    | 100 ns   | 150 ns 200 ns 250 ns 300 ns 350 ns         |
|---------------------------------------|---------------|----------|----------|--------------------------------------------|
|                                       |               | I.I.I.   | VORd     |                                            |
|                                       |               |          |          |                                            |
|                                       |               |          |          | בע הכד |
| LIDC Due                              |               | 5n       |          |                                            |
| LPC BUS 2                             |               |          | 180n     | 550                                        |
| 3                                     | LAD[1]        |          | 120n     | 25n 35n                                    |
| 4                                     | LAD[2]        |          | 120n     |                                            |
| 100 5                                 | LAD[3]        |          | 180n     | 55n                                        |
|                                       |               |          |          |                                            |
| Label                                 | hannel 1      |          |          |                                            |
|                                       |               |          |          |                                            |
| ⊙/Ⅲ <u>CH-00</u> CH-00<br>CH-01 CH-00 |               | Bus(LPC) | <b>•</b> |                                            |
| Sample                                | Field         | #Clocks  | LAD      | Comment                                    |
| 6                                     | START         | 1        | 0        | Used for Memory or I/O or DMA cycles.      |
| 12                                    | CYCLETYPE+DIR | 1        | 0        | I/O Read                                   |
| 18                                    | ADDR          | 4        | 0064     |                                            |
| 42                                    | TAR           | 2        | FF       |                                            |
| 54                                    | SYNC          | 1        | 6        | Long Wait                                  |
| 60                                    | SYNC          | 1        | 6        | Long Wait                                  |
| 66                                    | SYNC          | 1        | 6        | Long Wait                                  |
| 72                                    | SYNC          | 1        | 6        | Long Wait                                  |
| 78                                    | SYNC          | 1        | 6        | Long Wait                                  |
| 84                                    | SYNC          | 1        | 6        | Long Wait                                  |
| 90                                    | SYNC          | 1        | 6        | Long Walt                                  |
| 96                                    | SYNC          | 1        | 6        | Long Walt                                  |
| 102                                   | SINC          | 1        | 6        | Long Walt                                  |
| 109                                   | SINU          | 1        | D        | roud mart                                  |
| •                                     |               |          |          | •                                          |
|                                       |               |          |          | 📕 229.24 us 📙 229.24 us 📙 0 🕒 🛄 🎁          |

# Memory Read Cycle 信号

| Time/Div: 30 | Ons 🕻     | 3         |             |             |                                              |             |         |                   |         |            |         |         |                        | B     |
|--------------|-----------|-----------|-------------|-------------|----------------------------------------------|-------------|---------|-------------------|---------|------------|---------|---------|------------------------|-------|
| Acquired: 0  | 8:00:00.0 | 27        | Ons<br>I    | 320 ns      | 370 ns                                       | 420 n       | s<br>   | 470 ns            | 52<br>  | 0 ns<br>II | 570 ns  |         | 620 ns                 |       |
|              |           | ADD       | R: FFFFFFF0 |             | TÅR                                          | SYNC: 6     | SYNC: 6 | SYNC: 6           | SYNC: 6 | SYNC: 6    | SYNC: 6 | SYNC: 6 | SYNC: 6                |       |
|              | O LCLK    | 15n 15n 1 | 15n 15n 15n | 15n 15n 15r | 15n 15n                                      | 15n 15n 15n | 15n 15n | 15n 15n           | 15n 15n | 15n 15n    | 15n 15n | 15n 15n | 15n 15n                |       |
|              | 1 LFRAME: |           |             |             |                                              |             |         |                   |         |            |         |         |                        |       |
| LPC Bus      | 2 LAD[0]  |           |             | n 55r       | <u>,                                    </u> |             |         |                   |         |            |         |         |                        |       |
|              | 3 LAD[1]  |           | 30r         |             |                                              | -           |         |                   | -       | 1          |         |         |                        |       |
|              | 4 LAD[2]  |           |             |             |                                              |             |         |                   |         |            |         |         |                        |       |
|              | 5 LAD[3]  |           |             | n 55r       |                                              |             |         |                   |         |            |         |         |                        | _     |
|              | LPC       |           |             |             |                                              | i           | 1       | 1                 | 1       | :          |         | 1       |                        |       |
| Label        | Channel   |           |             |             |                                              |             |         |                   |         |            |         |         | •                      | ]     |
| ⊘/Ⅲ CH-00    | CH-00     |           | Bus(LPC)    | -           |                                              |             |         |                   |         |            |         |         |                        |       |
| Com la       | Ei ala    |           | #C1.c.alaa  |             | Common                                       |             | _       |                   |         |            |         |         |                        |       |
| 20           | ADDD      | 1         | #CIUCKS     | LAD         | commer                                       | IL          |         |                   |         |            |         |         |                        |       |
| 68           | TAR       |           | 2           | FF          |                                              |             |         |                   |         |            |         |         |                        |       |
| 80           | SYNC      |           | 1           | 6           | Long b                                       | Jait        |         |                   |         |            |         |         |                        |       |
| 86           | SYNC      |           | 1           | 6           | Long b                                       | Jait        |         |                   |         |            |         |         |                        |       |
| 92           | SYNC      |           | 1           | 6           | Long U                                       | Jait        |         |                   |         |            |         |         |                        |       |
| 98           | SYNC      |           | 1           | 6           | Long U                                       | Jait        |         |                   |         |            |         |         |                        |       |
| 104          | SYNC      |           | 1           | 6           | Long U                                       | Jait        |         |                   |         |            |         |         |                        |       |
| 110          | SYNC      |           | 1           | 6           | Long U                                       | Jait        |         |                   |         |            |         |         |                        |       |
| 116          | SYNC      |           | 1           | 6           | Long U                                       | Jait        |         |                   |         |            |         |         |                        |       |
| 122          | SYNC      |           | 1           | 6           | Long U                                       | Jait        |         |                   |         |            |         |         |                        |       |
| 128          | SYNC      |           | 1           | 6           | Long U                                       | Jait        |         |                   |         |            |         |         |                        |       |
| 134          | SYNC      |           | 1           | 6           | Long U                                       | Jait        |         |                   |         |            |         |         |                        |       |
| 140          | SYNC      |           | 1           | 6           | Long U                                       | Jait        |         |                   |         |            |         |         |                        |       |
| 146          | SYNC      |           | 1           | 6           | Long U                                       | Jait        |         |                   |         |            |         |         |                        | -     |
| •            | I         |           |             |             |                                              |             |         |                   |         |            |         |         | •                      |       |
|              |           |           |             |             |                                              |             |         | _                 |         |            | N       |         |                        | 1.000 |
|              |           |           |             |             |                                              | A           | 1.014 r | ns <mark>B</mark> | 1.0     | 14 ms 🔓    | в       |         | 0 <mark>(O</mark> ) [] |       |



## LPT

LPT(Line Printer Terminal Port)是自 80 年代起在个人计算机上相当普遍的并列接口,主要是让用户可以连接打印机等设备。目前支持其中 EPP Mode 的总线分析。

| LPT                  | (EPP) 参数设置 ×  |
|----------------------|---------------|
|                      |               |
| Data0(LSB) CH 1 ·    | Read Address  |
| Data[7:0] => CH[8:1] | Write Address |
| /nWrite CH 0 ·       | Read Data     |
| /nWait CH 10         | Write Data    |
| /nDStrb CH 13        |               |
| /nAStrb CH 16        | 范围选择          |
| _                    | 选择要分析的范围      |
|                      | 起始位置 缓冲区开头 ▼  |
| Address Table Report | 结束位置   缓冲区结尾  |
|                      | 缺省 确定 取消      |

Data0(LSB): 共8个通道的Data,只需设置LSB的通道即可,其他通道程序会自动扩增。

/nWrite: 标示数据的传输方向。

/nWait: 通知传输已经完成。

/nDStrb: 标示目前传输的是资料。

/nAStrb: 标示目前传输的是地址。

/nInit: 通知 LPT 回到兼容模式,此通道可选择是否使用。

/nIntr: 中断讯号,此通道可选择是否使用。



| Time/Div: 60 ns              | <b>V</b> |                              |            |        |                  |         |                  |                |                      |          |                 |               |          | (          | 3  |
|------------------------------|----------|------------------------------|------------|--------|------------------|---------|------------------|----------------|----------------------|----------|-----------------|---------------|----------|------------|----|
| Acquired: 15:23:2            | 9        | 6.45 us -60                  | 06.35 us   | -60    | 6.25 us          | -6      | 06.15 us         | -6             | 06.05 us             |          | 505.95 us       | -60           | 05.85 us |            |    |
|                              | R/       | D:28 IDL<br>165 ns<br>165 ns | E          | R/D:64 | ID<br>165 ns     | LE<br>5 | R/D:             | 85<br>17<br>56 | IDLE<br>Øns          | R        | /D:88           | IDL<br>165 ns | E        |            |    |
| 107 102456                   |          | 165 ns                       |            |        |                  |         | 335 ns<br>335 ns |                |                      |          |                 |               |          |            |    |
| LP1 1,2,3,4,3,0              |          |                              | 33(        | ns     | 165 ns           | 5       |                  |                |                      | 335      | ns              |               |          |            |    |
|                              | 65       | 5 ns 100<br>ns 100 n         | ns<br>Is 6 | 65 ns  | <u>10</u><br>105 | 5 ns    | 65<br>60_n       | ns _           | <u>100</u><br>105 ns | ns<br>L6 | 65 ns<br>5 ns [ | 100<br>100 r  | ns<br>15 |            |    |
| LPT                          |          |                              |            |        |                  |         |                  |                |                      |          |                 |               |          |            | •  |
| Label Channel                | •        |                              |            |        |                  |         |                  |                |                      |          |                 |               |          | ►          |    |
| O/TT CH-00 CH-00 CH-00 CH-00 | AA III.  |                              | (LPT)      |        | -                |         |                  |                |                      |          |                 |               |          |            |    |
| Sample                       | R/W      | Addr/Data                    | D0         | D1     | D2               | D3      | D4               | D5             | D6                   | D7       | D8              | D9            | D10      | D1:        |    |
| -121299                      | Read     | Data                         | 2B         | 64     | 85               | 88      | BB               | 00             | 07                   | FF       | F3              |               |          |            |    |
| -4                           | Write    | Address                      | A5         |        |                  |         |                  |                |                      |          |                 |               |          |            |    |
| 108263                       | Write    | Address                      | F2         |        |                  |         |                  |                |                      |          |                 |               |          |            |    |
| 214850                       | Write    | Address                      | F6         |        |                  |         |                  |                |                      |          |                 |               |          |            |    |
| 32311/                       | Write    | Address                      | F0         |        |                  |         |                  |                |                      |          |                 |               |          |            |    |
| 439491                       | Write    | Address                      | A7         |        |                  |         |                  |                |                      | _        |                 | _             |          |            |    |
| 749242                       | Write    | Address                      | AD<br>E A  | or.    | 77               | 04      |                  |                |                      |          |                 |               |          |            |    |
| 813532                       | Read     | Data                         | 28         | 64     | 05               | 88      | BB               | 00             | 07                   | EE       | E3              |               |          |            |    |
| 015552                       | Redu     | Ducu                         | 20         | 04     | 0.5              |         | 00               | 00             |                      |          |                 |               |          |            | 11 |
|                              |          |                              |            |        |                  |         |                  |                |                      |          |                 |               |          |            |    |
|                              |          | A 1.84                       | 73532      | 05 KHz | B                | 455     | <b>.07188</b>    | 9982           | Hz A                 | 6        | 03.813          | 687249        | Hz 🕒     | ) <b>N</b> |    |



## **M-Bus**

M-Bus (Meter-Bus) 是一种用来远程读取热量表的总线,也可以用于其他能源的测量表。

#### 参数设置

| MBus 参数设置 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | × |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|           | Channel<br>Master CH 0 • Auto Detect<br>Baud Rate<br>9600 • Parity Idle high • Parity None • MSB first<br>Polarity Idle low • MSB first<br>Adv. report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ^ |
| ┌波形顔色     | Start / Stop<br>CI Field<br>Field<br>C Field<br>C Field |   |
|           | 选择要分析的范围<br>起始位置    结束位置<br>缓冲区开头                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|           | 缺省 确定 取消                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |

Channel: 设置信号通道及极性

Baud rate: 信号的传输速度

Parity: 错误侦测

**MSB first:** 显示为 MSB 的格式

Adv. report: Advanced report



| Time/Div: 1.024 ms               | s 📮              |         |               |          |                    |         |                               |            |            |                  |        |         |        |      |
|----------------------------------|------------------|---------|---------------|----------|--------------------|---------|-------------------------------|------------|------------|------------------|--------|---------|--------|------|
| Acquired: 17:07:4                | 6.228            | .915 \$ | 3.916 \$      | 3.918 \$ | 3.92 \$ 3.9        | 921 \$  | 3.923 S                       | 3.924 S    | 3.926 S    | 3.928            | S      | 3.929 S | 3.9    | 31 S |
| M bus 0 M                        | laster X         | L: 04h  | L: 04h S: 68h | C: 53h   | A: FEh CI: \$0h D: | 10h CS: | Eih, E <mark>Stop: 16h</mark> | S: E5h S   | 58h L: 13h | L: 13h           | S: 68h | C: 08h  | Ai 05h |      |
|                                  |                  |         |               |          |                    |         |                               |            |            |                  |        |         |        |      |
| Label Ch                         | annel Tri (      |         |               |          | i i                |         | 1                             | - i        | i i        |                  |        |         |        |      |
| @/fff CH-00 CH-00<br>CH-01 CH-00 | AR 111 Dex 1     | M bus(M | 1Bus) 💌       |          |                    |         | -                             |            |            |                  |        |         |        |      |
| Timestamp                        | Telegram Format  | L       | C Field(h)    | A        | CI Field(h)        | 1       | User Data(h)                  |            |            |                  |        |         | c      | In 🔺 |
| 3.913347075 S                    | Long Frame       | 04      | SND_UD(53)    | FE       | Application rese   | t(50)   | 10                            |            |            |                  |        |         | B1     |      |
| 3.92376468 S                     | Single Character |         |               |          |                    |         |                               |            |            |                  |        |         |        | _    |
| 3.92480644 S                     | Long Frame       | 13      | RSP_UD(08)    | 05       | Fixed data respo   | nd (73  | 78, 56, 34,                   | 12, OA, OO | , E9, 7E   |                  |        |         |        |      |
| 3.92480644 S                     |                  |         |               |          |                    |         | 01, 00, 00,                   | 00, 35, 01 | , 00, 00   |                  |        |         |        |      |
| 3.92480644 5                     | Terra France     | 15      | DED UD (00)   | 00       | Venichle date as   |         | 70 56 24                      | 10 04 40   | 01 07      |                  |        |         | 30     |      |
| 3.95065045 5                     | Long rrame       | 11      | K5P_0D(08)    | 02       | variable data re   | spond   | 55 00 00                      | 12, 24, 40 | 15 31      |                  |        |         |        |      |
| 3 95085045 5                     |                  |         |               |          |                    |         | 00 DA 02                      | 38 13 01   | 88 60      |                  |        |         |        |      |
| 3,95085045 5                     |                  |         |               |          |                    |         | 04, 37, 18,                   | 02, 10, 01 | , 02, 00   |                  |        |         | 18     |      |
| 3.98939559 S                     | Long Frame       | 06      | SND UD(53)    | FE       | Data send(51)      |         | 01, 7A, 08                    |            |            |                  |        |         | 25     |      |
| 4.001896715 S                    | Long Frame       | 0D      | SND UD(53)    | FE       | Data send(51)      |         | 07, 79, 04,                   | 03, 02, 01 | , 24, 40   |                  |        |         |        |      |
| 4.001896715 S                    |                  |         |               |          |                    |         | 01, 04                        |            |            |                  |        |         | 95     |      |
| 4.021690165 S                    | Long Frame       | OF      | SND_UD(53)    | FE       | Data send(51)      |         | OC, 79, 78,                   | 56, 34, 12 | , OC, O6   |                  |        |         |        | -    |
| ·                                |                  |         |               |          |                    |         |                               |            |            |                  |        |         |        | ▶    |
|                                  |                  |         |               |          | ۹.                 |         | 80                            | B          | 10         | 0 <mark>8</mark> |        |         | 20     |      |



# Math

Math 的功用是能够针对采集到的讯号做运算。讯号包含单一通道或是多通道组 合成的总线皆可针对其讯号做加、减、乘、除、AND、XOR、OR、NAND、NOR、 XNOR 的运算。

### 参数设置

| Math 参数设置                      |                                | ×     |
|--------------------------------|--------------------------------|-------|
| 运算通道设定   波形颜色设定   条件运算设定       |                                |       |
| 算式设置                           | 算式列表:<br>                      |       |
| 操作数 1:                         | A XOR B<br>(A + B) + (A XOR B) |       |
| B                              |                                |       |
| + =                            |                                |       |
| 操作数 2:                         |                                |       |
|                                |                                |       |
|                                | 将算式加入操作数 删除选                   | a择算式  |
|                                | 通确                             | 定取消   |
| Math 参数设置                      |                                | ×     |
| 运算通道设定 波形颜色设定 条件运算设定           |                                |       |
| 算式列表:                          | □□ 计算结果颜色                      |       |
| A + B<br>A XOR B               |                                |       |
| (A + B) + (A XOR B)            | <u> </u>                       |       |
|                                | 11. 计算范围                       |       |
|                                | 选择要计算的范围                       |       |
|                                | 起始位置      结束位                  | 置     |
|                                | 缓冲区开头 💽 缓冲区                    | 结尾  ▼ |
|                                | 74                             |       |
|                                | <u></u>                        |       |
| Math 参数设置                      |                                | ×     |
| 运算通道设定   波形颜色设定   条件运算设定       |                                |       |
| 算式列表:                          | 🕕 符合条件颜色                       |       |
| A XOR B<br>(A + B) + (A XOR B) |                                |       |
|                                | N 1. Arty / July cost          |       |
|                                |                                | h     |
|                                |                                |       |
|                                |                                | -     |
|                                |                                |       |
|                                | 确                              | 定 取消  |



#### 运算通道设置

操作数: 欲做运算之通道, 会自动列出目前波形窗口中的通道卷标名称。

"+"运算方式:可选择加、减、乘、除、AND、XOR、OR、NAND、NOR、XNOR。 "=":将表达式新增到算式列表。

**将算式加入操作数:**将算式列表中的表达式新增至操作数中让使用者可以选取 来对讯号做进一步之运算。

删除选择算式:将算式列表中所选取的项目删除。

**条件运算设置:**可以设置条件藉由计算结果 Frame 之颜色差异来寻找某些特定数值,可设置 ">="、">"、"="、"<="、"<",数值支援十或十六进制。

|  | 分材 | f结 | 果 |
|--|----|----|---|
|--|----|----|---|

| Time/Div: | l us       | 3     |       |       |           |        |        |           |           |        |        |                       |          |            |                   |
|-----------|------------|-------|-------|-------|-----------|--------|--------|-----------|-----------|--------|--------|-----------------------|----------|------------|-------------------|
| Acquired: | 10:20:09.0 |       | 160.0 | 57 us | 162.27 us | 163.8  | 7 us   | 165.47 us | 167.      | .07 us | 168.67 | us 17<br>             | 70.27 us | 171.       | B7 us             |
| А         | 40         | 1     | 2     | 3     | 4         | 4      | 5      | 6         | 7         | 9      | 9      | в                     | в        | D          | D                 |
| в         | 5          |       |       |       |           |        | 3.91   | 95u       | -         | 1.005u | 995n   | 1.005u                | 995n     | 1.005u     | 995n              |
| С         | 7,6        |       |       |       |           |        |        | 2         |           |        |        |                       |          |            | <u>)</u> 1        |
| D         | 8          |       |       |       |           |        | 5.005u |           |           | L      |        |                       |          |            |                   |
| E         | 119        | 2     | ) з   | _X    |           |        |        |           | 0         |        |        |                       |          |            |                   |
| F         | 1512       |       |       | 0     |           | )( 1 ) | (2)    | (з        | <u> 4</u> | (5)    | 6      | (7)                   | ( 8      | <u>)</u> 9 | XA                |
| Label     | Chanr      | nel 💶 |       |       |           | 1      | 1      |           | 1         | 1      |        |                       | 1        |            |                   |
| O/TT CH-C | 00 CH-00   |       | A(Ma  | ith)  | •         |        |        |           |           |        |        |                       |          |            |                   |
| Sample    | 1 Ch-00 1  | + B   |       | -     |           |        |        |           |           |        |        |                       |          |            | <b></b>           |
| 31801     | 1          |       |       |       |           |        |        |           |           |        |        |                       |          |            |                   |
| 32000     | 2          |       |       |       |           |        |        |           |           |        |        |                       |          |            |                   |
| 32200     | 4          |       |       |       |           |        |        |           |           |        |        |                       |          |            |                   |
| 32202     | 3          |       |       |       |           |        |        |           |           |        |        |                       |          |            |                   |
| 32400     | 4          |       |       |       |           |        |        |           |           |        |        |                       |          |            |                   |
| 32599     | 8          |       |       |       |           |        |        |           |           |        |        |                       |          |            |                   |
| 32600     | 7          |       |       |       |           |        |        |           |           |        |        |                       |          |            |                   |
| 32602     | 4          |       |       |       |           |        |        |           |           |        |        |                       |          |            |                   |
| 32800     | 5          |       |       |       |           |        |        |           |           |        |        |                       |          |            |                   |
| 33000     | 7          |       |       |       |           |        |        |           |           |        |        |                       |          |            |                   |
| 33003     | 6          |       |       |       |           |        |        |           |           |        |        |                       |          |            |                   |
| 33200     | 7          |       |       |       |           |        |        |           |           |        |        |                       |          |            | -                 |
| •         |            |       |       |       |           |        |        |           |           |        |        |                       |          |            |                   |
|           |            |       |       |       |           |        | A      |           | 340 ns    | B      | 44(    | ) ns <mark>A</mark> B |          | 100 ns     | <b>©</b>  J∐ ↑↑↑↑ |

注意事项:设置完成之后,按下确定,会将当时所有的设置写入档案(AqMath.txt) 并存储在工作目录下。该档案在每次按下确定时都会被覆写,所以存盘时,除了 要存储波形档(\*.law)之外,还要将 AqMath.txt 另外存储一份。开启该波形档时, 须先将 AqMath.txt 置于工作目录我的文件/Acute 之下再开启该波形档即可。



# Mobile Display Digital Interface (MDDI)

Mobile Display Digital Interface (MDDI) 是高通在 2004 年针对移动式穿戴装置 发表的显示屏通讯协议,相较于传统通讯模式为高速且低功耗的方案,主要应 用于手机中做为 CPU 和显示屏之间的通信。数据源根据: VESA Mobile Display Digital Interface Standard Version 1.2,目前仅支持 Type I 的传输模式译码分析.

#### MDDI 参数设定

| MDDI Set | tings                                  |
|----------|----------------------------------------|
| 通道设置     | MDDI STB CH 0 + CH 1 + CH 1 +          |
| 波形颜色     | 5 ———————————————————————————————————— |
|          |                                        |
|          | Packet Length                          |
|          | Packet Header                          |
|          | Packet Data                            |
| 分析范围     | 1                                      |
| <b></b>  | 选择要分析的范围                               |
|          | 起始位置 结束位置                              |
|          | 缓冲区开头 ▼ 缓冲区结尾 ▼                        |
|          | 默认 确定 取消                               |

(1) 通道设定

MDDI STB: MDDI Strobe

MDDI D0+/-: MDDI Data 0 +/-

设定量测的信道讯号位置, D0 讯号可选择数据来自于 D0+或是 D0-

(2) 波形颜色



可设定 Frame 内每个 Field 之标记颜色。

(3) 分析范围

选择分析的范围,从起始位置到结束位置之间作分析。





## MDIO

MDIO(Management Data Input/Output),称为"以太网络串行通讯总线",它是由 IEEE 根据以太网络标准 IEEE802.3 (第 22 条款)以及 IEEE802.3ae(第 45 条款)的 多项内容所定义,又称为 SMI(Serial Management Interface)。MDIO 由 MDC、 MDIO 2 通道组成。

#### 参数设置

| MDIC     | )参数设置              |                   |           |      |                           | ? ×     |
|----------|--------------------|-------------------|-----------|------|---------------------------|---------|
| 参数设置     | ┇<br>┌             |                   |           | 波形颜色 | <u>a</u>                  |         |
| Ż        | Management Data Cl | ock (MDC)         | сно .     |      | Preamble (PRE)            |         |
|          | Management Data In | put/Output (MDIO) | СН 1 ·    |      | OP Code (OP)              |         |
|          | Preamble 设置        |                   |           |      | PHY Address (PHYADR)      | <b></b> |
|          | 32                 |                   | ▼ Bit     |      | Register Address (REGADR) | <b></b> |
|          | 数据设置               |                   |           |      | Turnaround (TA)           | <b></b> |
|          | Data Edge          | Rising            | C Falling |      | DeviceType (DEVTYPE)      | <b></b> |
| 分析范围     | l                  |                   |           |      | Address (ADDR)            | <b></b> |
| <b>2</b> | 选择要分析的范围           |                   |           |      | Data (DATA)               |         |
|          | 起始位置               | 缓冲区开头             | -         |      |                           |         |
|          | 结束位置               | 缓冲区结尾             | •         |      |                           |         |
|          |                    |                   |           |      | 缺省                        | 确定取消    |

MDC: MDIO 数据传输之 Clock。

MDIO: MDIO 数据传输之 Data。

Data Edge: 可设置数据域位是 MDC 上升沿/下降沿采集数据,缺省上升沿。

Preamble 设置: 设置 MDIO Preamble 宽度 4-32 Bit, 缺省 32 Bit。







# **MHL-CBUS**

MHL(Mobile High-definition Link Control Bus)是一种行动高画质的连接接口, CBUS 则是 MHL 中负责控制讯号的接口。

#### 参数设置

| CBUS 参数计 | 受置                                             |                                                                  | × |
|----------|------------------------------------------------|------------------------------------------------------------------|---|
| 参数设置     | 通道设置<br>CBUS CH 0 💌                            | 波形颜色<br>设置数据的颜色<br>SYNC ▼                                        |   |
| 范围选择     | 选择要分析的范围<br>起始位置<br>缓冲区开头 ▼<br>结束位置<br>缓冲区结尾 ▼ | reacket   cPacket   dPacket   CMD /   PARITY   ACK   Arbitration |   |
|          |                                                |                                                                  |   |

通道设置: 设定待测物上的信号端接在逻辑分析仪的信道编号。



| Time/Div: 2.5 us                                                          | <b>2</b>                                                                                     |                                                                                                 |                                                            |                                            |                     |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|---------------------|
| Acquired: 14:17:0                                                         | 9.0                                                                                          | 200.25 us                                                                                       | 204.25 us 208.25 us 212.25                                 | 5 us 216.25 us 220.25 us                   | 224.25 us 228.25 us |
| CBUS                                                                      | 0                                                                                            | 1.10                                                                                            | 4.4u 1.55u 1.1u 1.1u                                       |                                            | 97.10               |
| Bus 1                                                                     | 0 MHL-CI                                                                                     |                                                                                                 | Idle SYNC DDC(00)                                          | ACK(33)                                    |                     |
| MHL-CBUS                                                                  |                                                                                              | 1.1u                                                                                            | 4.4u 1.55u 1.1u 1.1u                                       |                                            | 97.1w               |
| Label                                                                     | Channel 1                                                                                    |                                                                                                 |                                                            |                                            |                     |
| CH-00 CH-00 CH-00 CH-00                                                   |                                                                                              | Bus 1(MHL-CBUS                                                                                  | 5) <b>–</b>                                                |                                            |                     |
| Sample                                                                    | Header                                                                                       | Ctrl                                                                                            | SRC Packet                                                 | SINK Packet                                | Information 🔺       |
| 447                                                                       | DDC(00)                                                                                      | dPacket                                                                                         | Address: 74                                                |                                            |                     |
| 4126                                                                      | DDC (00)                                                                                     | cPacket                                                                                         |                                                            | ACK(33)                                    |                     |
| 6490                                                                      | DDC (00)                                                                                     | dPacket                                                                                         | Offset: 08                                                 |                                            |                     |
| 10167                                                                     | DDG (GG)                                                                                     |                                                                                                 |                                                            |                                            |                     |
|                                                                           | DDC(00)                                                                                      | cPacket                                                                                         |                                                            | ACK(33)                                    |                     |
| 10959                                                                     | DDC (00)<br>DDC (00)                                                                         | cPacket<br>cPacket                                                                              | SOF(30)                                                    | ACK(33)                                    |                     |
| 10959<br>12879                                                            | DDC (00)<br>DDC (00)<br>DDC (00)                                                             | cPacket<br>cPacket<br>dPacket                                                                   | SOF(30)<br>Address: 75                                     | ACK(33)                                    |                     |
| 10959<br>12879<br>13413                                                   | DDC(00)<br>DDC(00)<br>DDC(00)<br>DDC(00)                                                     | cPacket<br>cPacket<br>dPacket<br>cPacket                                                        | SOF(30)<br>Address: 75                                     | ACK(33)<br>ACK(33)                         |                     |
| 10959<br>12879<br>13413<br>13947                                          | DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)                                     | cPacket<br>cPacket<br>dPacket<br>cPacket<br>cPacket                                             | SOF(30)<br>Address: 75<br>CONT(50)                         | ACK(33)<br>ACK(33)                         |                     |
| 10959<br>12879<br>13413<br>13947<br>16849                                 | DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)                                     | cPacket<br>cPacket<br>dPacket<br>cPacket<br>cPacket<br>dPacket                                  | SOF(30)<br>Address: 75<br>CONT(50)                         | ACK(33)<br>ACK(33)<br>Data: F7             |                     |
| 10959<br>12879<br>13413<br>13947<br>16849<br>19205                        | DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)                         | cPacket<br>cPacket<br>dPacket<br>cPacket<br>cPacket<br>dPacket<br>cPacket                       | SOF(30)<br>Address: 75<br>CONT(50)<br>CONT(50)             | ACK(33)<br>ACK(33)<br>Data: F7             |                     |
| 10959<br>12879<br>13413<br>13947<br>16849<br>19205<br>20105               | DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)             | cPacket<br>cPacket<br>dPacket<br>cPacket<br>cPacket<br>dPacket<br>dPacket                       | SOF(30)<br>Address: 75<br>CONT(50)<br>CONT(50)             | ACK(33)<br>ACK(33)<br>Data: F7<br>Data: 30 |                     |
| 10959<br>12879<br>13413<br>13947<br>16849<br>19205<br>20105<br>22460      | DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00) | cPacket<br>cPacket<br>dPacket<br>cPacket<br>cPacket<br>dPacket<br>cPacket<br>cPacket<br>cPacket | SOF(30)<br>Address: 75<br>CONT(50)<br>CONT(50)<br>STOP(51) | ACK(33)<br>ACK(33)<br>Data: F7<br>Data: 30 |                     |
| 10959<br>12879<br>13413<br>13947<br>16849<br>19205<br>20105<br>22460<br>◀ | DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00)<br>DDC (00) | CPacket<br>CPacket<br>dPacket<br>CPacket<br>dPacket<br>dPacket<br>dPacket<br>cPacket<br>dPacket | SOF(30)<br>Address: 75<br>CONT(50)<br>CONT(50)<br>STOP(51) | ACK(33)<br>ACK(33)<br>Data: F7<br>Data: 30 |                     |



## MII/RMII

MII/RMII(Media Independent Interface/Reduced Media Independent Interface) 由 802.3u 制定出来并应用于 Fast Ethernet 上,连接 Data Link Layer 中的 MAC 层 和 PHY 层。MII 的時鐘频率为 25MHz 以及 2.5MHz (Ethernet),信号分别为 TX\_CLK 和 RX\_CLK;输出和输入各有4个bit 的总线:TX[0:3],RX[0:3];通知 输出和输入的启动信号:TX\_EN,RX\_EN;输出和输入的错误通知信号为:TX\_ER, RX\_ER:得到有效输入数据的通知信号为:RX\_DV;网络上出现壅塞的 Collision 信 号为:COL。MII 实作的电路电压可用 5V 或 3.3V。SMI(Serial Management Interface) 为 MII 时序管理接口,也称为 MDIO(Management Data Input/Output)。

#### 参数设置

| MII / RMII 💈                          | 参数设置                      |                            |                 | ×                                     |
|---------------------------------------|---------------------------|----------------------------|-----------------|---------------------------------------|
| 参数设置                                  | 54014-477                 |                            | 波形颜色            |                                       |
|                                       | ※我近2年<br>④ MII ( RMII ( O | nly CLK and DATA pins used |                 |                                       |
| 模                                     | [式设置                      |                            | Data            | <b></b>                               |
| (                                     | ● 发送模式(T×)                |                            | Error           | -                                     |
|                                       | ○ 接收模式(R×)                |                            | Collision       |                                       |
| (                                     | ○ 刈上視式(Tx+Rx)             |                            | Idle            |                                       |
| []                                    |                           |                            | Цркромр         |                                       |
|                                       |                           |                            | Draceshie / CED |                                       |
|                                       |                           |                            | Preamble ( SFD  |                                       |
|                                       |                           |                            | 分析范围            |                                       |
|                                       |                           |                            |                 | 的范围                                   |
| 1                                     | TX_D2 CH 3                |                            | 起始位:            | 2018日                                 |
| 1                                     | тх_рз Сн 4 🛉              | RX_D3 CH 4                 | 缓冲区             |                                       |
| 1                                     | TX_EN CH 5 🗧              | RX_DV CH 5                 | 结束位于            | <b>₹</b>                              |
| 1                                     | TX_ER CH6                 | RX_ER CH 6                 | 缓冲区             | 结尾                                    |
|                                       | TX_COL CH7                |                            |                 |                                       |
| └──────────────────────────────────── | 据设置                       | ┌ 报告窗口设置                   |                 |                                       |
| D                                     | Data Edge                 | 显示数据方式                     |                 |                                       |
| 6                                     | Rising C Falling          | ● 8栏 ○ 16栏                 |                 |                                       |
|                                       |                           |                            |                 | ····································· |
|                                       |                           |                            |                 |                                       |



MII / RMII: 选择 MII / RMII

#### GMII / RGMII: 选择 GMII / RGMII

Only CLK and Data pins used(M/G): MII / GMII 选择只使用 CLK 和 Data[0:3]

引脚的特殊模式

发送模式(Tx):选择发送模式

接收模式(Rx):选择接收模式

双工模式(Tx+Rx):选择同时发送和接收的双工模式

通道设置:设置待测物上,各个信号端,接在逻辑分析仪的通道编号。

Rising: 选择 Clock edge 上升沿时采样数据

Falling: 选择 Clock edge 下降沿时采样数据

8栏:选择报告窗口的数据域位为8栏显示

16栏:选择报告窗口的数据域位为16栏显示

#### 分析结果

| Time/Div: 60 ns      | 3           | 😺 🏮     |    |      |          |         |              |       |                   |        |        |   |        |   |       |     |        |           |    |                   |     | B               |
|----------------------|-------------|---------|----|------|----------|---------|--------------|-------|-------------------|--------|--------|---|--------|---|-------|-----|--------|-----------|----|-------------------|-----|-----------------|
| Acquired: 10:35      | 5:43.0      | _ i . 🇳 |    | 100  | ) ns<br> | 200     | ins<br>1 1 1 | 300 r | 15<br>- 1 - 1 - 1 | 400 ns | 500 ns | ( | 500 ns | 1 | 10 ns |     | 800 ns | 1.1       |    | ) ns<br>I i I i i | 1   | 1 us            |
| CLK                  | o           |         | Ē. |      |          | 1 🗆     |              |       |                   |        |        |   |        |   | Π     | L I |        | $\square$ | L. |                   | ר ר | <b>-</b> T      |
| RX DO                | 1           |         |    |      |          |         |              |       |                   |        |        | T |        |   |       |     |        |           |    | -                 |     |                 |
|                      | 2           |         |    |      |          |         |              |       |                   |        |        |   |        |   |       |     | _      |           |    | _                 |     | _               |
| IN_DI                | ŕ           |         |    |      |          |         |              |       |                   |        |        |   |        |   |       |     |        |           |    |                   |     |                 |
| RX_D2                | 3           |         |    |      |          |         |              |       |                   |        |        |   |        |   |       |     |        |           |    |                   |     |                 |
| RX_D3                | 4           |         |    |      |          |         |              | 600   | ns                |        |        |   |        |   |       |     |        |           | -  |                   |     |                 |
| RX_ER                | 5           |         |    |      |          |         |              |       |                   |        |        |   |        |   |       |     |        |           |    |                   |     |                 |
|                      | 6           |         |    |      |          |         |              |       |                   |        |        | _ | _      |   |       |     |        |           |    |                   |     |                 |
| PBus1                | 0,1,2,3,4,1 | 6, Idle | e  |      |          |         |              | Pream | ıble              |        |        |   | SFD    | F | F     | E   | F      | F         | F  | F                 | F   | F               |
|                      |             |         |    |      |          |         |              |       |                   |        |        |   |        |   |       |     |        |           |    |                   |     | -               |
| Label                | Channel     | •       |    |      |          |         |              |       |                   |        |        |   |        |   |       |     |        |           |    |                   |     | F               |
| CH-00 CH<br>CH-01 CH | -00<br>-00  | L III.  | Bu | Х РВ | us1(MII  | / RMII) |              | •     |                   |        |        |   |        |   |       |     |        |           |    |                   |     |                 |
| Timestamp            | DO          | Dl      | D2 | D3   | D4       | D5      | D6           | D7    | Informa           | tion   |        |   |        |   |       |     |        |           |    |                   |     | <u> </u>        |
| -0.00066 ms          | F           | F       | F  | F    | F        | F       | F            | F     |                   |        |        |   |        |   |       |     |        |           |    |                   |     |                 |
| 0.00098 ms           | F           | F       | F  | F    | 0        | 0       | 2            | 2     |                   |        |        |   |        |   |       |     |        |           |    |                   |     |                 |
| 0.0013 ms            | 8           | 6       | A  | 3    | С        | F       | 0            | 8     |                   |        |        |   |        |   |       |     |        |           |    |                   |     |                 |
| 0.00162 ms           | 8           | 0       | 0  | 0    | 5        | 4       | 0            | 0     |                   |        |        |   |        |   |       |     |        |           |    |                   |     |                 |
| 0.00194 ms           | 0           | 0       | E  | 4    | 6        | 3       | 8            | 9     |                   |        |        |   |        |   |       |     |        |           |    |                   |     |                 |
| 0.00226 ms           | 0           | 0       | 0  | 0    | 0        | 8       | 1            | 1     |                   |        |        |   |        |   |       |     |        |           |    |                   |     |                 |
| 0.00258 ms           | F           | 7       | A  | 6    | 0        | C       | 8            | A     |                   |        |        |   |        |   |       |     |        |           |    |                   |     |                 |
| 0.0029 ms            | 1           | 0       | D  | 4    | 0        | С       | 8            | A     |                   |        |        |   |        |   |       |     |        |           |    |                   |     |                 |
| 0.00322 ms           | 1           | 0       | F  | F    | 0        | 0       | 9            | 8     |                   |        |        |   |        |   |       |     |        |           |    |                   |     |                 |
| 0.00354 ms           | 0           | 0       | 9  | 8    | 0        | 0       | A            | 3     |                   |        |        |   |        |   |       |     |        |           |    |                   |     |                 |
| 0.00386 ms           | С           | 3       | 3  | D    | В        | F       | 9            | 8     |                   |        |        |   |        |   |       |     |        |           |    |                   |     |                 |
| •                    |             |         |    |      |          |         |              |       |                   |        |        |   |        |   |       |     |        |           |    |                   |     | Ŀ               |
|                      |             |         |    |      |          |         |              |       |                   |        |        | - |        |   |       |     |        |           |    |                   | -   | sin d <b>aa</b> |

#### MII



### RGMII





## Microwire

由美国国家半导体(National Semiconductor)所开发出的一种串行信号格式,硬件 架构以及信号运作方式均与 SPI(Serial Peripheral Interface)相同。在线路架构上, 有装置选择线(CS:Chip Select)、频率线(SK:Serial Clock)及数据输入输出线 (DI:Data Input/DO:Data Output)等。

#### 参数设置

| Microwire | 参数设置                                                                                                                                                                                                                  |                                        |      |                                                                                               | ×                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|-----------------------------------------------------------------------------------------------|-------------------|
| 参数设置      |                                                                                                                                                                                                                       |                                        | 波形颜色 |                                                                                               |                   |
|           | 通道设置<br>Chip Select Channel (CS) CH 0<br>Clock Channel (SK) CH 1<br>Data In Channel (DI) CH 2<br>Data Out Channel (DO) CH 3<br>数据设置<br>Chip Select Edge O Active High<br>Data Edge(DI) Rising<br>Data Edge(DO) Rising | C Active Low<br>C Falling<br>• Falling |      | ERASE/WRITE ENABLE<br>ERASE/WRITE DISABLE<br>ERASE<br>WRITE<br>READ<br>ERASE ALL<br>WRITE ALL |                   |
|           | EEPROMs<br>93xx46A or 93xx46C, 8 Bits<br>报告视窗设置<br>显示数据方式 8栏                                                                                                                                                          | <b>•</b>                               | 分析范围 | 选择要分析的范围<br>起始位置<br>缓冲区开头 ▼                                                                   | 结束位置<br>缓冲区结尾   ▼ |
|           |                                                                                                                                                                                                                       |                                        |      |                                                                                               | 缺省 通定 取消          |

Chip Select Channel (CS): Microwire 数据传输之 CS。

Clock Channel (CLK): Microwire 数据传输之 Clock。

Data In Channel (DI): Microwire 数据传输之 Data In。

Data Out Channel (DO): Microwire 数据传输之 Data Out。

Chip Select Edge: 决定片选信号为低电压或高电压。

Data Edge: 决定读取数据的方式,分上升沿或下降沿。

EEPROMs: 选择所使用的 EEPROM。

报告窗口设置:设置报告窗口数据栏位显示。



| Read        |        |         |          |                 |          |          |         |    |          |          |          |       |            |          |           |      |
|-------------|--------|---------|----------|-----------------|----------|----------|---------|----|----------|----------|----------|-------|------------|----------|-----------|------|
| Time/Div: 2 | .5 us  |         | 9        |                 |          |          |         |    |          |          |          |       |            |          |           | 3    |
| Acquired: 0 | 8:00:0 | 0.0     |          | 3.981 ms        | 3.985 r  | ns       | 3.989 r | ns | 3.993 r  | ns       | 3.997 r  | ns    | 4.001 ms   | 4.005 ms | 4.009 ms  |      |
|             |        |         |          |                 | * + 0.40 | 1        |         | 24 | 1 1      |          |          | 1     |            |          | 00        | •    |
|             |        |         | K        | ead             | A∓040    |          |         | 21 |          |          | .0       |       | 73         | 11       | °В        |      |
|             | 0 Chip | Select  |          |                 |          |          |         |    |          |          |          |       |            |          |           |      |
| Microwire   | 1 CLK  |         |          |                 | 2.6u 👖   |          | 3.3u    | ΠΠ |          | 2.2u     |          | 2.3u  | 2.2        | NNNN     | ]] 2.3u   |      |
|             | 2 Data | In      |          |                 | .5u      |          |         |    |          |          |          |       |            |          |           |      |
|             |        | <u></u> |          |                 |          |          |         |    | <u></u>  | 24       | 1., П    | 2.0.1 |            |          |           |      |
| MICROWIRE   | 3 Data | Out     | <u> </u> |                 |          |          |         |    | 1.40     | 2,40     |          | 5.00  |            |          |           |      |
|             |        |         |          |                 |          |          |         |    |          |          |          |       |            |          |           |      |
|             |        |         |          |                 |          |          |         |    |          |          |          |       |            |          |           |      |
|             |        |         |          |                 |          |          |         |    |          |          |          |       |            |          |           |      |
|             |        |         |          |                 |          |          |         |    |          |          |          |       |            |          |           |      |
|             |        |         |          |                 |          |          |         |    |          |          |          |       |            |          |           |      |
|             |        |         |          |                 |          |          |         |    |          |          |          |       |            |          |           |      |
|             |        |         |          |                 |          |          |         |    |          |          |          |       |            |          |           | •    |
| Label       | Chanr  | nel     | •        |                 |          |          |         |    |          |          |          |       |            |          | •         |      |
| CH-00       | CH-00  | nn      | Vev      | Microwine (MICI |          |          |         |    |          |          |          |       |            |          |           |      |
| CH-01       | CH-00  | 3131    | And I    |                 | NOWIKE   | <u> </u> |         |    |          |          |          |       |            |          |           |      |
| Sample      |        | Comm    | and      | Address         | DO       | Dl       | D2      | D3 | D4       | D5       | D6       | D7    | ASCII(DO-D | 7)       |           |      |
| 39765       |        | Read    |          | 040             | 21       | 10       | 73      | 11 | 8B       | DO       | A1       | 5A    | !.sZ       |          |           |      |
| 40265       |        |         |          |                 | 50       | 63       | 91      | 32 | D8       | F6       | A8       | E9    | Pc.2       |          |           |      |
| 40645       |        |         |          |                 | F9<br>FF | TT<br>FF | 11      | FF | FF<br>FF | FF<br>FF | TT<br>FF | 11    |            |          |           |      |
| 41405       |        |         |          |                 | FF       | FF       | FF      | FF | FF       | FF       | FF       | FF    |            |          |           |      |
| 41785       |        |         |          |                 | FF       | FF       | FF      | FF | FF       | FF       | FF       | FF    |            |          |           |      |
| 42165       |        |         |          |                 | FF       | FF       | FF      | FF | FF       | FF       | FF       | FF    |            |          |           | -    |
| •           |        |         |          |                 |          |          |         |    |          |          |          |       |            |          | Þ         |      |
|             |        |         |          |                 |          |          |         |    |          | 2 005    |          | 10    | 2 200 mc A | 00 5     | 02 mc 🕒 🛙 | 1111 |
|             |        |         |          |                 |          |          |         | A  |          | 2.895    | B        | 10    | 2.390 ms B | 90.5     |           |      |

### Write

| Time/Div: 1.2 us  | <b>7</b> |                   |           |          |         |                |          |       |            |      |           |           |            |            |
|-------------------|----------|-------------------|-----------|----------|---------|----------------|----------|-------|------------|------|-----------|-----------|------------|------------|
| Acquired: 08:00:0 | 0.0      | 396.724 ms        | 396.726 m | s 39     | 6.728 m | is 3           | 396.73 m | s 3   | 96.732 m   | ns 3 | 96.734 ms | 396.736 m | s 396.738  | ms         |
|                   |          | )<br>utrite       |           | 11       |         |                | A=06E    |       |            | 1    |           | 67        |            |            |
|                   |          |                   |           |          |         | _              | 11 002   |       |            | 1    |           |           |            |            |
| U Chip s          | pelect   |                   |           |          |         |                |          |       |            |      |           |           |            |            |
| Microwire 1 CLK   |          |                   |           |          |         | 2.7u           |          |       |            |      | 2.6u      |           |            |            |
| 2 Data            | In       | 1                 | .4u       |          | Z       | .4u            | 7        | '00n  | <b>1</b> u | -    | 2.4u      | 700n 600  | n          |            |
| 3 Data            | Out      |                   |           |          |         |                |          |       |            |      |           |           |            |            |
| MICROWIRE         |          |                   |           |          |         |                |          |       |            |      |           |           |            |            |
|                   |          |                   |           |          |         |                |          |       |            |      |           |           |            |            |
|                   |          |                   |           |          |         |                |          |       |            |      |           |           |            |            |
|                   |          |                   |           |          |         |                |          |       |            |      |           |           |            |            |
|                   |          |                   |           |          |         |                |          |       |            |      |           |           |            |            |
|                   |          |                   |           |          |         |                |          |       |            |      |           |           |            |            |
|                   |          |                   |           |          |         |                |          |       |            |      |           |           |            | <b>–</b>   |
| Label Chann       | el 💶     |                   |           |          |         |                |          |       |            |      |           |           |            |            |
| CH-00 CH-00       |          |                   |           | -        |         |                |          |       |            |      |           |           |            |            |
| CH-01 CH-00       |          | -iiciowiie(i-iick | OWINE)    | <u> </u> |         |                |          |       |            |      |           |           |            |            |
| Sample            | Command  | Address           | DO        | Dl       | D2      | D3             | D4       | D5    | D6         | D7   | ASCII (   | DO-D7)    |            | <b>_</b> _ |
| 3967220           | Write    | 06E               | 67        |          |         |                |          |       |            |      | g         |           |            |            |
| 4002950           | Write    | 070               | A8<br>20  |          |         |                |          |       |            |      | •         |           |            |            |
| 4030001           | Write    | 070               | 20<br>D4  |          |         |                |          |       |            |      | +         |           |            |            |
| 4110142           | Write    | 072               | 7E        |          |         |                |          |       |            |      | •         |           |            |            |
| 4145873           | Write    | 073               | 1E        |          |         |                |          |       |            |      |           |           |            |            |
| 4181603           | Write    | 074               | F2        |          |         |                |          |       |            |      |           |           |            | <b>_</b>   |
| •                 |          |                   |           |          |         |                |          |       |            |      |           |           |            |            |
|                   |          |                   |           |          |         | _              |          |       |            |      |           |           |            |            |
|                   |          |                   |           |          |         | <mark>#</mark> |          | 3.895 | ms 📕       | 10   | 2.398 ms  | B 98      | 3.503 ms 🤆 |            |
|                   |          |                   |           |          |         |                |          |       | _          |      |           |           |            |            |



## MIPI DSI

MIPI Display Serial Interface (DSI) 为 MIPI 联盟所制定用以传输影像讯号的通讯协议, 其工作模式包含有 High Speed Mode 及 Low Power Mode (LPM)。

#### 参数设定

| MIPI DSI 参数设置                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 通道设置 LP Mode Channel Dp Ch 0 ↓ Dn Ch 1 ↓ Clock + Ch 2 ↓ D2+ Ch 5 ↓ D3+ Ch 6 ↓                                                                                                         |
| ✓ 高级显示 □ 显示 DCS Command □ Always goes to HS Mode<br>初始传输方向 Master -> Slave ▼                                                                                                          |
| Start of Transmission <ul> <li>Word Count</li> <li>Transmission Mode</li> <li>Data Frame</li> <li>Escape Mode Action</li> <li>End of Transmittion</li> <li>Data Identifier</li> </ul> |
| <ul> <li>分析范围</li> <li>选择要分析的范围</li> <li>起始位置</li> <li>结束位置</li> <li>缓冲区开头</li> <li>缓冲区结尾</li> </ul>                                                                                  |
|                                                                                                                                                                                       |

Dp, Dn: DSI-LP 模式的讯号通道

Data Lane: DSI-HS 模式的讯号通道数

Clock+, D0+, D1+, D2+, D3+: DSI-HS 模式的讯号通道

Always goes to HS Mode: 忽略 DSI-LP 模式下 Dp 及 Dn 的状态,一律将资料判

读为 HS-Mode



Advanced Decode: 将数据依照 DSI 格式译码

Show DCS Command: 将 DSI 数据中的 DCS Command 数据译码

初始传输方向:选择初始状态时总线的数据传输方向

### 结果

一般解碼:

| Time (Dime                           |                                      |              |               |          |          |                |     |        |    |          |    |       |         |    |       |             |        |             |   |
|--------------------------------------|--------------------------------------|--------------|---------------|----------|----------|----------------|-----|--------|----|----------|----|-------|---------|----|-------|-------------|--------|-------------|---|
| Time/Div:                            | 2.56 us                              | 3            |               |          | T .      |                |     |        |    |          |    |       |         |    |       |             |        |             |   |
| Acquired:                            | 16:55:26.0                           | -3.2 us      |               |          | <b>.</b> |                | 3.2 | IS<br> | (  | 5.4 us   | 9  | .6 us | 12.8 us |    | 16 us | 1           | 9.2 us | 22.4 us     |   |
| MIPI DSI-LP                          | 91 Dp                                | Idle         | LPDT<br>1.86u |          | 3        | 37             | 5u  | 01     | 6. | 250      | 00 |       | 2.65u   | 08 |       | )F<br>1.85u | 0F     | 01<br>3.05u |   |
|                                      |                                      | 1.45u        |               | 1.8      | 35u 1    | l.05u          |     |        |    |          |    | 1.45u |         |    | 1.85u |             | 1.85u  |             |   |
|                                      |                                      |              |               |          |          |                |     |        |    |          |    |       |         |    |       |             |        |             |   |
| Label                                | Chan                                 |              |               |          |          |                |     |        |    |          |    |       |         |    |       |             |        |             | • |
|                                      | 0 <u>CH-00</u>                       | Bus M        | IPI DS        | SI-LP1   | (MIPI    | DSI-L          | .P) | •      |    |          |    |       |         |    |       |             |        |             |   |
| Sample                               | Mode                                 | Action       | DO            | D1       | D2       | D3             | D4  | D5     | D6 | D7       |    |       |         |    |       |             |        |             | • |
| -890                                 | LP_ESC                               | LPDT         | 37            | 01       | 00       |                |     |        |    |          |    |       |         |    |       |             |        |             |   |
|                                      |                                      |              | _             |          |          | 10             | 08  | Ur     | 0r | 01       |    |       |         |    |       |             |        |             |   |
| 5230                                 | LP_ESC                               | LPDT         | 06            | OA       | 00       | 3F             | 08  | OF     | OF | 01<br>01 |    |       |         |    |       |             |        |             |   |
| 5230<br>11350                        | LP_ESC<br>LP_BTA                     | LPDT         | 06            | 0A       | 00       | 3F             | 08  | OF     | OF | 01<br>01 |    |       |         |    |       |             |        |             |   |
| 5230<br>11350<br>11602               | LP_ESC<br>LP_BTA<br>LP_ESC           | LPDT         | 06<br>21      | 0A<br>08 | 00       | 3F<br>37       | 08  | OF     | OF | 01       |    |       |         |    |       |             |        |             |   |
| 5230<br>11350<br>11602<br>12791      | LP_ESC<br>LP_BTA<br>LP_ESC<br>LP_BTA | LPDT<br>LPDT | 06<br>21      | 0A<br>08 | 00       | 1D<br>3F<br>37 | 08  | OF     | OF | 01       |    |       |         |    |       |             |        |             |   |
| 5230<br>11350<br>11602<br>12791      | LP_ESC<br>LP_BTA<br>LP_ESC<br>LP_BTA | LPDT<br>LPDT | 06            | 0A<br>08 | 00       | 3F<br>37       | 08  | OF     | OF | 01       |    |       |         |    |       |             |        |             |   |
| 5230<br>11350<br>11602<br>12791      | LP_ESC<br>LP_BTA<br>LP_ESC<br>LP_BTA | LPDT<br>LPDT | 06            | 0A<br>08 | 00       | 3F<br>37       | 08  | OF     | OF | 01       |    |       |         |    |       |             |        |             |   |
| 5230<br>11350<br>11602<br>12791      | LP_ESC<br>LP_BTA<br>LP_ESC<br>LP_BTA | LPDT<br>LPDT | 06            | 0A<br>08 | 00       | 3F<br>37       | 08  | OF     | OF | 01       |    |       |         |    |       |             |        |             |   |
| 5230<br>11350<br>11602<br>12791      | LP_ESC<br>LP_BTA<br>LP_ESC<br>LP_BTA | LPDT<br>LPDT | 21            | 0A<br>08 | 00       | 3F<br>37       | 08  | OF     | OF | 01       |    |       |         |    |       |             |        |             |   |
| 5230<br>11350<br>11602<br>12791      | LP_ESC<br>LP_BTA<br>LP_ESC<br>LP_BTA | LPDT<br>LPDT | 21            | 0A<br>08 | 00       | 3F<br>37       | 08  | OF     | OF | 01       |    |       |         |    |       |             |        |             |   |
| 5230<br>11350<br>11602<br>12791<br>▲ | LP_ESC<br>LP_BTA<br>LP_ESC<br>LP_BTA | LPDT<br>LPDT | 06            | 0A<br>08 | 00       | 3F<br>37       | 08  | OF     | OF | 01       |    |       |         |    |       |             |        |             | - |

#### 进阶显示:

| Time/Div: 2  | 2.56 us                       | <b>Ş</b> |        | <b>U</b>                            |       |      |       |    |    |       |         |    |           |                 |          |
|--------------|-------------------------------|----------|--------|-------------------------------------|-------|------|-------|----|----|-------|---------|----|-----------|-----------------|----------|
| Acquired: 1  | 16:55:26.0                    |          | .2 us  | 3.2 us 6.4 us 9                     | .6 us | 12.  | 8 us  | 16 | us | i     | 19.2 us | s  | 22.4      | us<br>          |          |
| MIPI DSI-LP: | 1 Dp<br>IIFIDSI-LEP Dn<br>Cha |          | LPDT   |                                     |       | 2.65 | DI 08 | 5u | 0F | 1.85u | 1.850   | 0F | 35u  <br> | ECC 01<br>3.05u |          |
| @/# CH-00    | CH-00<br>CH-00                | Bus Bus  | MIPI D | SI-LP1(MIPI DSI-LP)                 |       |      |       |    |    |       |         |    |           |                 |          |
| Sample       | Mode                          | Action   | vc     | DT                                  | WC    | DO   | D1 D2 | D3 | D4 | D5    | D6      | D7 | ECC       | CRC             | <b></b>  |
| -890         | LP_ESC                        | LPDT     | 00     | Set Maximum Return Packet Size (37) |       | 01   | 00    |    |    |       |         |    | 1D        |                 |          |
| 2480         |                               |          | 00     | End of Transmission packet (EoTp)   |       | OF   | OF    |    |    |       |         |    | 01        |                 |          |
| 5230         | LP_ESC                        | LPDT     | 00     | DCS READ, no parameters (06)        |       | 0A   | 00    |    |    |       |         |    | 3F        |                 |          |
| 8600         |                               |          | 00     | End of Transmission packet (EoTp)   |       | OF   | OF    |    |    |       |         |    | 01        |                 |          |
| 11350        | LP_BTA                        |          |        |                                     |       |      |       |    |    |       |         |    |           |                 |          |
| 11602        | LP_ESC                        | LPDT     | 00     | DCS Short READ Response, 1 byte r   |       | 08   | 00    |    |    |       |         |    | 37        |                 |          |
| 12791        | LP_BTA                        |          |        |                                     |       |      |       |    |    |       |         |    |           |                 | _        |
|              |                               |          |        |                                     |       |      |       |    |    |       |         |    |           |                 |          |
|              |                               |          |        |                                     |       |      |       |    |    |       |         |    |           |                 |          |
|              |                               |          |        |                                     |       |      |       |    |    |       |         |    |           |                 | _        |
|              |                               |          |        |                                     |       |      |       |    |    |       |         |    |           |                 | <u> </u> |
|              | ]                             |          |        |                                     |       |      |       |    |    |       |         |    |           |                 | •        |
|              |                               |          |        |                                     |       |      |       |    |    |       |         |    |           |                 |          |



## **MIPI RFFE**

MIPI RFFE(RF Front-End Control Interface)是一种专门针对当前及未来行动无线系统在射频(RF)前端控制设备的总线接口规范。

| 参数 | 设 | 置 |
|----|---|---|
|----|---|---|

| MIPI RFFE 参数设置                      |                                     |                            | ×  |
|-------------------------------------|-------------------------------------|----------------------------|----|
| 通道设置<br>SCLK CH 0 ÷<br>SDATA CH 1 ÷ | -波形颜色<br>ssc<br>SA<br>Command<br>BC | Address<br>Data<br>P<br>BP |    |
| 分析范围<br>选择要分析的范围<br>起始位置  缓冲区开头     | 結束位置 缓                              | 中区结尾                       |    |
|                                     |                                     | 缺省 确定                      | 取消 |

### 通道设置:设置 SCLK 及 SDATA 的信号通道

| Time/Div: 30 ns   | <b>P</b>              |                                 |                |              |              |                     |               |               |               |
|-------------------|-----------------------|---------------------------------|----------------|--------------|--------------|---------------------|---------------|---------------|---------------|
| Acquired: 16:26:0 | 5.1 588.51us          | 588.56 us 588.61 us 588.66 us   | 588.71 us 588. | 76 us 588.81 | us 588.86 us | 588.91 us           | 588.96 us 589 | .01 us 589.06 | 5us 589.11us  |
|                   | SSC                   | SA 4                            |                | C            | ommand: Re   | g. Wr               |               | Address 01    | <b>•</b>      |
| MIPI RFFE SCLK    | :                     | 30 ns 30 i                      | ns             | 30           | ns           |                     | 30 ns         |               | 30 ns         |
| SDA               | TA 55 ns              | 100 ns 55 ns                    | 155            | ns           | 50 ns        |                     |               |               |               |
| Label Cha         | nne 🔹                 |                                 |                |              |              |                     |               |               | · ·           |
| Mit CH-00 CH-00   |                       | IPI RFFE(MIPI RFFE)             |                | -            |              |                     |               |               |               |
| Sample            | SV                    | Command                         | Bute Count     | Adrees       | Data         | Information         |               |               |               |
| 1770              | Sname (years defined) | Bogiston Write Correstd         | Dyce count     | 10           | DM TRIC (07) | Information         |               |               |               |
| 117694            | Spare (user-defined)  | Register Write Command          |                | 01           | 04           |                     |               |               |               |
| 117965            | Spare (user-defined)  | Extended Register Write Command | 0              | CF           | 00           |                     |               |               |               |
| 118340            | Spare (user-defined)  | Extended Register Write Command | 0              | 00           | 00           |                     |               |               |               |
| 118705            | Spare (user-defined)  | Register 0 Write Command        |                |              | 02           |                     |               |               |               |
| 118913            | Spare (user-defined)  | Register Write Command          |                | 1C           | PM TRIG(01)  |                     |               |               |               |
| 119215            | Spare (user-defined)  | Register Write Command          |                | 01           | 48           |                     |               |               |               |
| 119486            | Spare (user-defined)  | Register Write Command          |                | 1C           | PM TRIG(07)  |                     |               |               |               |
| 133090            | Spare (user-defined)  | Register Write Command          |                | 01           | 04           |                     |               |               |               |
| 133361            | Spare (user-defined)  | Extended Register Write Command | 0              | CF           | 00           |                     |               |               |               |
| 133736            | Spare (user-defined)  | Extended Register Write Command | 0              | CC           | 00           |                     |               |               |               |
| 134100            | Spare (user-defined)  | Register 0 Write Command        |                |              | 02           |                     |               |               |               |
| 134309            | Spare (user-defined)  | Register Write Command          |                | 1C           | PM_TRIG(01)  |                     |               |               |               |
| •                 |                       |                                 |                |              |              |                     |               |               | <u> </u>      |
|                   |                       |                                 |                | ۹ 🐌          |              | 0 Hz <mark>B</mark> | 1.316 MHz     |               | 10.851 Hz 🕒 🕅 |



# **MIPI SPMI**

MIPI SPMI(System Power Management Interface)是由 MIPI 联盟制定用以连接 Power Controller 及 Power Management IC 的传输接口。

| M                  | IPI SPMI 参 | 数设置               | ×          |
|--------------------|------------|-------------------|------------|
| 通道设置               | •          | SDATA CH          | 1 •        |
|                    |            |                   |            |
| Start              | <b>-</b>   | SSC               | <b>— -</b> |
| C-bit              | <b></b>    | Command Frame     | <b>-</b>   |
| A-bit              | <b>-</b>   | Data Frame        | <b></b>    |
| SR-bit             | <b></b>    | Parity bit        | <b>-</b>   |
| Master Arbitration | <b>_</b>   | Bus Park          | -          |
| Slave Arbitration  | <b>_</b>   | No Response Frame |            |
|                    |            |                   |            |
| 选择要分析的范围           |            |                   |            |
| 起始位置 缓冲区开头         | ▼ 结        | 東位置 缓冲区结          | 浘 👤        |
|                    | 缺省         | [ 确定 ]            | 取消         |

### 参数设置

通道设置:设置 SCLK 及 SDATA 的信号通道



| Time/Div: 30 ns 🛛 🧕                                                                                            |                                                     |            |                 |   |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------|-----------------|---|
| Acquired: 15:49:47.0                                                                                           | 222.69276 ms 222.69282 ms 222.69288 ms 222.69294 ms | 222.693 ms | 222.69306 ms    |   |
|                                                                                                                | BP CO AO                                            | MPL3       |                 | - |
| MIPI_SPMI SCLK                                                                                                 | 30 ns 30 ns 30 ns 30 ns 30 ns                       | 30 ns      | 30 ns 30 ns     |   |
|                                                                                                                | 310 ns                                              |            |                 |   |
|                                                                                                                |                                                     |            |                 | - |
| Label Channe                                                                                                   |                                                     |            | Þ               |   |
| CH-00         CH-00         CH-00         FL           CH-01         CH-00         FL         CH-00         FL |                                                     |            |                 |   |
| Sa C A SR                                                                                                      | Devi Command(Hex)                                   | Data       | Data Frame(Hex) |   |
| 22268 MPL3                                                                                                     | SA=00 3B (Extended Register Read Long: 4Bytes)      | 704C       | 0F 00 FF F8     | _ |
| 22269 MPL3                                                                                                     | SA=00 3B (Extended Register Read Long: 4Bytes)      | 704C       | 03 07 08 F8     |   |
| 22270 MPL3                                                                                                     | SA=00 3B (Extended Register Read Long: 4Bytes)      | 704C       | 35 52 32 F8     |   |
| 22271 MPL3                                                                                                     | SA=00 3B (Extended Register Read Long: 4Bytes)      | 704C       | 32 32 36 F8     |   |
| 22271 MPL3                                                                                                     | SA=00 3B (Extended Register Read Long: 4Bytes)      | 704C       | 34 2E 31 F8     |   |
| 22272 MPL3                                                                                                     | SA=00 3B (Extended Register Read Long: 4Bytes)      | 704C       | 38 00 00 F8     |   |
| 22273 MPL3                                                                                                     | SA=00 3B (Extended Register Read Long: 4Bytes)      | 704C       | 02 05 00 F8     |   |
| 22274 MPL3                                                                                                     | SA=00 30 (Extended Register Write Long: 1Bytes)     | 7041       | 80              |   |
| 22275 MPL3                                                                                                     | SA=00 31 (Extended Register Write Long: 2Bytes)     | 7042       | FC 07           |   |
| 22275 MPL3                                                                                                     | SA=00 3B (Extended Register Read Long: 4Bytes)      | 704C       | 00 11 00 F8     |   |
| 22276 MPL3                                                                                                     | SA=00 30 (Extended Register Write Long: 1Bytes)     | 7040       | 00              |   |
| 22277 MPL3                                                                                                     | SA=04 38 (Extended Register Read Long: 1Bytes)      | 7004       | 16              |   |
| 22278 MPL3                                                                                                     | SA=04 30 (Extended Register Write Long: 1Bytes)     | 7040       | 80              | - |
|                                                                                                                |                                                     |            | F               |   |
|                                                                                                                | A 141.658308826 Hz B 141.658308826 Hz               | A<br>B     | 0 нг 🕒 🚺        |   |



## MMC

MMC(Multi Media Card)以及 eMMC(Embedded MMC) v5.0,是一种快闪内存卡的标准,由西门子与 SanDisk 共同开发。

参数设置

| MMC 参要 | 收设置                                                                                   |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | <b>—</b>                                                  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------|--|--|--|--|
| 参数设置   | - 通道设置                                                                                |                                                                    | 一分析方式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 波形颜色 | 设置数据的颜色                                                   |  |  |  |  |
| :2     | CLK CH 0 •<br>CMD CH 1 •<br>Data0 CH 2 •<br>Data1 CH 3 •<br>Data2 CH 4 •              | Data3 CH 5<br>Data4 CH 6<br>Data5 CH 7<br>Data6 CH 8<br>Data7 CH 9 | Command only C Data only C Command + Data Command Ref. Data0 Adv. Report Don't care dock Data C 8-bit Data C 4-bit Data C 1-bit Data C | u    | Start bit Host Device CMD/Resp CMD/Resp CRC check End bit |  |  |  |  |
|        | DQS CH 10 小                                                                           |                                                                    | DDR mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | Data  CRC status Busy                                     |  |  |  |  |
| 范围选择   | 数据长度     512     Bytes (Min: 1, Max: 16384)       范围选择     选择要分析的范围       記録     指東位置 |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                                           |  |  |  |  |
| · · ·  | │缓/中区开头                                                                               | _                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 缺省 确定 取消                                                  |  |  |  |  |

通道设置:设置待测物上,各个信号端,接在逻辑分析仪的通道编号。

Command only: 只显示 Command 结果

Data only: 只显示 Data 结果。

Command + Data: 显示 Command 结果于波形区,并于报告区同时显示

Command 及 Data 结果。

Ref. DAT0: 可用来辅助 Response 判断 R1/R1b

Adv. Report: 报告区会对 Command argument 数据进一步译码

Don't care clock: 时只依照 CMD 通道来译码,不需要 CLK 通道。

Data: 可选择 DDR mode、8 位、4 位或1 位的数据以及是否需要 Data strobe 通

道,在DDR mode下勾选"Non-interleaved"后分析数据不会交错排列

数据长度: 设置分析目标的数据长度, 由使用者自行设置。



### 结果

### Command:

| Time/Div: 12                                                                                                                       | 25 ns 😼                                                                                                                        |                                                                                                                                                         |                                                                                                                                                                                                  |                                                                                  |                                                                                                                                |                                                                                                                                                               | 5             |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Acquired: 14                                                                                                                       | 4:27:25.2 -1.3516                                                                                                              | 05 ms -1.351505 ms -1.351405 n                                                                                                                          | ns -1.351305 ms                                                                                                                                                                                  | -1.351205 ms                                                                     | -1.351105 ms                                                                                                                   | -1.351005 ms                                                                                                                                                  | -1.350905 ms  |
|                                                                                                                                    | Idle                                                                                                                           | CMD16:SET_BLOCKLEN                                                                                                                                      |                                                                                                                                                                                                  | Data                                                                             | :00h                                                                                                                           |                                                                                                                                                               | ▲<br>Data:00h |
| ммс 0                                                                                                                              |                                                                                                                                |                                                                                                                                                         | 0 1 0 1 0 1 0                                                                                                                                                                                    | 1010                                                                             | 10101                                                                                                                          | 010101                                                                                                                                                        | 0 1 0 1 0 1   |
| 1                                                                                                                                  | Command 1 0                                                                                                                    | 1 0 1                                                                                                                                                   |                                                                                                                                                                                                  |                                                                                  |                                                                                                                                |                                                                                                                                                               |               |
| Label C                                                                                                                            | ihannel                                                                                                                        |                                                                                                                                                         |                                                                                                                                                                                                  |                                                                                  |                                                                                                                                |                                                                                                                                                               | •             |
| €)/111 CH-00<br>CH-01                                                                                                              |                                                                                                                                | C(MMC)                                                                                                                                                  |                                                                                                                                                                                                  |                                                                                  |                                                                                                                                |                                                                                                                                                               |               |
|                                                                                                                                    |                                                                                                                                |                                                                                                                                                         |                                                                                                                                                                                                  |                                                                                  |                                                                                                                                |                                                                                                                                                               |               |
| Timestamp                                                                                                                          | Command                                                                                                                        | Response                                                                                                                                                | Argument (h)                                                                                                                                                                                     | CRC7 (h)                                                                         | Frequency                                                                                                                      | Timing                                                                                                                                                        | Information 🔺 |
| Timestamp<br>-0.0013                                                                                                               | Command                                                                                                                        | Response<br>R1 :CMD13:SEND_STATUS                                                                                                                       | Argument (h)<br>00 00 09 00                                                                                                                                                                      | CRC7 (h)<br>1F                                                                   | Frequency<br>26MHz                                                                                                             | Timing<br>Ncr: 5                                                                                                                                              | Information 🔺 |
| Timestamp<br>-0.0013<br>-0.0013                                                                                                    | Command<br>CMD16:SET_BLOCKLEN                                                                                                  | Response<br>R1 :CMD13:SEND_STATUS                                                                                                                       | Argument (h)<br>00 00 09 00<br>00 00 02 00                                                                                                                                                       | CRC7 (h)<br>1F<br>ØA                                                             | Frequency<br>26MHz<br>25MHz                                                                                                    | Timing<br>Ncr: 5<br>Nrc: 21                                                                                                                                   | Information 🔺 |
| Timestamp<br>-0.0013<br>-0.0013<br>-0.0013                                                                                         | Command CMD16:SET_BLOCKLEN                                                                                                     | Response<br>R1 :CMD13:SEND_STATUS<br>R1 :CMD16:SET_BLOCKLEN                                                                                             | Argument (h)<br>00 00 09 00<br>00 00 02 00<br>00 00 09 00                                                                                                                                        | CRC7 (h)<br>1F<br>0A<br>05                                                       | Frequency<br>26MHz<br>25MHz<br>26MHz                                                                                           | Timing<br>Ncr: 5<br>Nrc: 21<br>Ncr: 5                                                                                                                         | Information 🔺 |
| Timestamp<br>-0.0013<br>-0.0013<br>-0.0013<br>-0.0012                                                                              | Command<br>CMD16:SET_BLOCKLEN<br>CMD08:SEND_EXT_CSD                                                                            | Response<br>R1 :CMD13:SEND_STATUS<br>R1 :CMD16:SET_BLOCKLEN                                                                                             | Argument (h)<br>00 00 09 00<br>00 00 02 00<br>00 00 09 00<br>00 00 00 00                                                                                                                         | CRC7 (h)<br>1F<br>0A<br>05<br>61                                                 | Frequency<br>26MHz<br>25MHz<br>26MHz<br>26MHz                                                                                  | Timing<br>Ncr: 5<br>Nrc: 21<br>Ncr: 5<br>Nrc: 22                                                                                                              | Information 🔺 |
| Timestamp<br>-0.0013<br>-0.0013<br>-0.0013<br>-0.0012<br>-0.0012                                                                   | Command<br>CMD16:SET_BLOCKLEN<br>CMD08:SEND_EXT_CSD                                                                            | Response<br>R1 :CMD13:SEND_STATUS<br>R1 :CMD16:SET_BLOCKLEN<br>R1 :CMD18:SEND_EXT_CSD                                                                   | Argument (h)<br>00 00 09 00<br>00 00 02 00<br>00 00 09 00<br>00 00 00 00<br>00 00 09 00                                                                                                          | CRC7 (h)<br>1F<br>0A<br>05<br>61<br>78                                           | Frequency<br>26MHz<br>25MHz<br>26MHz<br>26MHz<br>26MHz                                                                         | Timing<br>Ncr: 5<br>Nrc: 21<br>Ncr: 5<br>Nrc: 22<br>Ncr: 5                                                                                                    | Information A |
| Timestamp<br>-0.0013<br>-0.0013<br>-0.0013<br>-0.0012<br>-0.0012<br>-0.0000                                                        | Command<br>CMD16:SET_BLOCKLEN<br>CMD08:SEND_EXT_CSD<br>CMD06:SWITCH                                                            | Response<br>R1 :CMD13:SEND_STATUS<br>R1 :CMD16:SET_BLOCKLEN<br>R1 :CMD8:SEND_EXT_CSD                                                                    | Argument (h)<br>00 00 09 00<br>00 00 02 00<br>00 00 09 00<br>00 00 00 00<br>00 00 09 00<br>03 B9 01 00                                                                                           | CRC7 (h)<br>1F<br>0A<br>05<br>61<br>78<br>17                                     | Frequency<br>26MHz<br>25MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz                                                       | Timing<br>Ncr: 5<br>Nrc: 21<br>Ncr: 5<br>Nrc: 22<br>Ncr: 5<br>Nrc > 4095                                                                                      | Information   |
| Timestamp<br>-0.0013<br>-0.0013<br>-0.0013<br>-0.0012<br>-0.0012<br>-0.0000<br>0.00000                                             | Command<br>CMD16:SET_BLOCKLEN<br>CMD08:SEND_EXT_CSD<br>CMD06:SWITCH                                                            | Response<br>R1 :CMD13:SEND_STATUS<br>R1 :CMD16:SET_BLOCKLEN<br>R1 :CMD8:SEND_EXT_CSD<br>R1b:CMD6:SWITCH                                                 | Argument (h)<br>00 00 09 00<br>00 00 02 00<br>00 00 09 00<br>00 00 00 00<br>00 00 09 00<br>03 B9 01 00<br>00 00 08 00<br>00 00 08 00                                                             | CRC7 (h)<br>1F<br>0A<br>05<br>61<br>78<br>17<br>65<br>20                         | Frequency<br>26MHz<br>25MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz                                     | Timing<br>Ncr: 5<br>Nrc: 21<br>Ncr: 5<br>Nrc: 22<br>Ncr: 5<br>Nrc > 4095<br>Ncr: 5                                                                            | Information A |
| Timestamp<br>-0.0013<br>-0.0013<br>-0.0012<br>-0.0012<br>-0.0000<br>0.00000<br>0.00011<br>0.00011                                  | Command<br>CMD16:SET_BLOCKLEN<br>CMD08:SEND_EXT_CSD<br>CMD06:SWITCH<br>CMD13:SEND_STATUS                                       | Response<br>R1 :CMD13:SEND_STATUS<br>R1 :CMD16:SET_BLOCKLEN<br>R1 :CMD8:SEND_EXT_CSD<br>R1b:CMD6:SWITCH<br>P1 :CMD12:SEND_STATUS                        | Argument (h)<br>00 00 09 00<br>00 00 02 00<br>00 00 09 00<br>00 00 00 00<br>00 00 09 00<br>03 B9 01 00<br>00 00 08 00<br>00 01 00 00                                                             | CRC7 (h)<br>1F<br>0A<br>05<br>61<br>78<br>17<br>65<br>29<br>15                   | Frequency<br>26MHz<br>25MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz                            | Timing<br>Ncr: 5<br>Nrc: 21<br>Ncr: 5<br>Nrc: 22<br>Ncr: 5<br>Nrc > 4095<br>Ncr: 5<br>Nrc: 1329                                                               | Information A |
| Timestamp<br>-0.0013<br>-0.0013<br>-0.0012<br>-0.0012<br>-0.0000<br>0.00000<br>0.00011<br>0.00011<br>0.00011                       | Command<br>CMD16:SET_BLOCKLEN<br>CMD08:SEND_EXT_CSD<br>CMD06:SWITCH<br>CMD13:SEND_STATUS<br>CMD10:BUISTEST W                   | Response<br>R1 :CMD13:SEND_STATUS<br>R1 :CMD16:SET_BLOCKLEN<br>R1 :CMD8:SEND_EXT_CSD<br>R1b:CMD6:SWITCH<br>R1 :CMD13:SEND_STATUS                        | Argument (h)<br>00 00 09 00<br>00 00 02 00<br>00 00 09 00<br>00 00 09 00<br>00 00 09 00<br>00 00 09 00<br>00 00 08 00<br>00 01 00 00<br>00 00 09 00                                              | CRC7 (h)<br>1F<br>0A<br>05<br>61<br>78<br>17<br>65<br>29<br>1F<br>46             | Frequency<br>26MHz<br>25MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz                   | Timing<br>Ncr: 5<br>Nrc: 21<br>Ncr: 5<br>Nrc: 22<br>Ncr: 5<br>Nrc: 4095<br>Ncr: 5<br>Nrc: 1329<br>Ncr: 5                                                      | Information A |
| Timestamp<br>-0.0013<br>-0.0013<br>-0.0013<br>-0.0012<br>-0.0000<br>0.00000<br>0.000011<br>0.00011<br>0.00110<br>0.00110           | Command<br>CMD16:SET_BLOCKLEN<br>CMD08:SEND_EXT_CSD<br>CMD06:SWITCH<br>CMD13:SEND_STATUS<br>CMD19:BUSTEST_W                    | Response<br>R1 :CMD13:SEND_STATUS<br>R1 :CMD16:SET_BLOCKLEN<br>R1 :CMD8:SEND_EXT_CSD<br>R1b:CMD6:SWITCH<br>R1 :CMD13:SEND_STATUS<br>R1 :CMD19:BUSTEST W | Argument (h)<br>00 00 09 00<br>00 00 02 00<br>00 00 09 00<br>00 00 09 00<br>00 00 09 00<br>00 00 08 00<br>00 00 08 00<br>00 00 09 00<br>00 00 09 00<br>00 00 09 00<br>00 00 09 00                | CRC7 (h)<br>1F<br>0A<br>05<br>61<br>78<br>17<br>65<br>29<br>1F<br>46<br>55       | Frequency<br>26MHz<br>25MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>52MHz<br>52MHz          | Timing<br>Ncr: 5<br>Nrc: 21<br>Ncr: 5<br>Nrc: 22<br>Ncr: 5<br>Nrc: 4095<br>Ncr: 5<br>Nrc: 1329<br>Ncr: 5<br>Nrc: 21                                           | Information A |
| Timestamp<br>-0.0013<br>-0.0013<br>-0.0012<br>-0.0012<br>-0.0000<br>0.00000<br>0.00011<br>0.00011<br>0.00110<br>0.00110<br>0.00116 | Command<br>CMD16:SET_BLOCKLEN<br>CMD08:SEND_EXT_CSD<br>CMD06:SWITCH<br>CMD13:SEND_STATUS<br>CMD19:BUSTEST_W<br>CMD14:BUSTEST_R | Response<br>R1 :CMD13:SEND_STATUS<br>R1 :CMD16:SET_BLOCKLEN<br>R1 :CMD8:SEND_EXT_CSD<br>R1b:CMD6:SWITCH<br>R1 :CMD13:SEND_STATUS<br>R1 :CMD19:BUSTEST_W | Argument (h)<br>00 00 09 00<br>00 00 02 00<br>00 00 09 00<br>00 00 09 00<br>03 B9 01 00<br>00 00 08 00<br>00 00 08 00<br>00 00 09 00<br>00 00 09 00<br>00 00 09 00<br>00 00 00 00<br>00 00 00 00 | CRC7 (h)<br>1F<br>0A<br>05<br>61<br>78<br>17<br>65<br>29<br>1F<br>46<br>5F<br>55 | Frequency<br>26MHz<br>25MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>52MHz<br>52MHz<br>51MHz | Timing<br>Ncr: 5<br>Nrc: 21<br>Ncr: 5<br>Nrc: 22<br>Ncr: 5<br>Nrc: 4095<br>Ncr: 5<br>Nrc: 1329<br>Ncr: 5<br>Nrc: 21<br>Ncr: 5<br>Nrc: 65                      | Information   |
| Timestamp<br>-0.0013<br>-0.0013<br>-0.0012<br>-0.0012<br>-0.0000<br>0.00000<br>0.000011<br>0.00011<br>0.00110<br>0.00110           | Command<br>CMD16:SET_BLOCKLEN<br>CMD08:SEND_EXT_CSD<br>CMD06:SWITCH<br>CMD13:SEND_STATUS<br>CMD19:BUSTEST_W<br>CMD14:BUSTEST_R | Response<br>R1 :CMD13:SEND_STATUS<br>R1 :CMD16:SET_BLOCKLEN<br>R1 :CMD8:SEND_EXT_CSD<br>R1b:CMD6:SWITCH<br>R1 :CMD13:SEND_STATUS<br>R1 :CMD19:BUSTEST_W | Argument (h)<br>00 00 09 00<br>00 00 02 00<br>00 00 09 00<br>00 00 00 00<br>00 00 09 00<br>03 B9 01 00<br>00 00 08 00<br>00 01 00 00<br>00 00 00 00<br>00 00 00 00<br>00 00 00 00<br>00 00 00 00 | CRC7 (h)<br>1F<br>0A<br>05<br>61<br>78<br>17<br>65<br>29<br>1F<br>46<br>5F<br>5C | Frequency<br>26MHz<br>25MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>52MHz<br>52MHz<br>51MHz          | Timing<br>Ncr: 5<br>Nrc: 21<br>Nrc: 22<br>Ncr: 5<br>Nrc: 4095<br>Ncr: 5<br>Nrc: 1329<br>Ncr: 5<br>Nrc: 21<br>Ncr: 5<br>Nrc: 65                                | Information   |
| Timestamp<br>-0.0013<br>-0.0013<br>-0.0012<br>-0.0012<br>-0.0000<br>0.00000<br>0.00011<br>0.00011<br>0.00110<br>0.00110<br>0.00116 | Command<br>CMD16:SET_BLOCKLEN<br>CMD08:SEND_EXT_CSD<br>CMD06:SWITCH<br>CMD13:SEND_STATUS<br>CMD19:BUSTEST_W<br>CMD14:BUSTEST_R | Response<br>R1 :CMD13:SEND_STATUS<br>R1 :CMD16:SET_BLOCKLEN<br>R1 :CMD8:SEND_EXT_CSD<br>R1b:CMD6:SWITCH<br>R1 :CMD13:SEND_STATUS<br>R1 :CMD19:BUSTEST_W | Argument (h)<br>00 00 09 00<br>00 00 02 00<br>00 00 09 00<br>00 00 00 00<br>00 00 09 00<br>00 00 08 00<br>00 01 00 00<br>00 00 00 00<br>00 00 00 00<br>00 00 00 00<br>00 00 00 00                | CRC7 (h)<br>1F<br>0A<br>05<br>61<br>78<br>17<br>65<br>29<br>1F<br>46<br>5F<br>5C | Frequency<br>26MHz<br>25MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>26MHz<br>52MHz<br>52MHz<br>51MHz | Timing<br>Ncr: 5<br>Nrc: 21<br>Nrc: 5<br>Nrc: 22<br>Ncr: 5<br>Nrc: 4095<br>Ncr: 5<br>Nrc: 1329<br>Ncr: 5<br>Nrc: 21<br>Ncr: 5<br>Nrc: 21<br>Ncr: 5<br>Nrc: 65 | Information   |

## Adv. Report:

| Time /D:                                                                                             | in. 16 ug 🛄                                                               |                                                    |                                                                                                                                                                                                                                                                                                                                 |                                                          |                                                                                                                     |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| lime/D.                                                                                              | -4. 14.25.29 0                                                            | 266 388275 ms                                      | 266 439475 ms 266 490675 r                                                                                                                                                                                                                                                                                                      | ne                                                       | 266 54187                                                                                                           |
| Acquire                                                                                              | Ed: 14:25:50.0                                                            | <u>.   .   .   .   .   .   .   .   .   .  </u>     |                                                                                                                                                                                                                                                                                                                                 | . <u></u>                                                | 1.1.1.1.1.1.                                                                                                        |
|                                                                                                      |                                                                           | CMD1:SEND_0P_COND                                  | Data:40h Data:FCh                                                                                                                                                                                                                                                                                                               | Data:0                                                   | oon 🕺                                                                                                               |
| MMC_C                                                                                                |                                                                           |                                                    |                                                                                                                                                                                                                                                                                                                                 |                                                          |                                                                                                                     |
|                                                                                                      | 2 Command                                                                 | 26.66 us                                           | 32 us 32 us                                                                                                                                                                                                                                                                                                                     |                                                          |                                                                                                                     |
| Label                                                                                                | Channel                                                                   |                                                    |                                                                                                                                                                                                                                                                                                                                 |                                                          |                                                                                                                     |
| <b>⊙</b> /†††                                                                                        | CH-00 CH-00 AAA                                                           |                                                    | IC) 🔽                                                                                                                                                                                                                                                                                                                           |                                                          |                                                                                                                     |
| 5                                                                                                    |                                                                           |                                                    |                                                                                                                                                                                                                                                                                                                                 |                                                          |                                                                                                                     |
|                                                                                                      | Command                                                                   | Response                                           | Argument (h)                                                                                                                                                                                                                                                                                                                    | CRC7 (h)                                                 | Frequency 🔺                                                                                                         |
| 5327                                                                                                 | Command<br>CMD01:SEND_OP_COND                                             | Response                                           | Argument (h)<br>40 FC 00 00                                                                                                                                                                                                                                                                                                     | CRC7 (h)                                                 | Frequency<br>187KHz                                                                                                 |
| 5327<br>5333                                                                                         | Command<br>CMD01:SEND_OP_COND                                             | Response<br>R3 :Check bit(63)                      | Argument (h)<br>40 FC 00 00<br>00 FF 80 00                                                                                                                                                                                                                                                                                      | CRC7 (h)<br>27<br>7F                                     | Frequency<br>187KHz<br>187KHz                                                                                       |
| 5327<br>5333<br>5333                                                                                 | Command<br>CMD01:SEND_OP_COND                                             | Response<br>R3 :Check bit(63)                      | Argument (h)<br>40 FC 00 00<br>00 FF 80 00<br>Bit[31] OCR register power up not OK                                                                                                                                                                                                                                              | CRC7 (h)<br>27<br>7F                                     | Frequency<br>187KHz<br>187KHz                                                                                       |
| 5327<br>5333<br>5333<br>5333                                                                         | Command<br>CMD01:SEND_OP_COND                                             | Response<br>R3 :Check bit(63)                      | Argument (h)<br>40 FC 00 00<br>00 FF 80 00<br>Bit[31] OCR register power up not OK<br>Bit[30:29] Access mode: byte mode                                                                                                                                                                                                         | CRC7 (h)<br>27<br>7F                                     | Frequency<br>187KHz<br>187KHz                                                                                       |
| 5327<br>5333<br>5333<br>5333<br>5333                                                                 | Command<br>CMD01:SEND_OP_COND                                             | Response<br>R3 :Check bit(63)                      | Argument (h)<br>40 FC 00 00<br>00 FF 80 00<br>Bit[31] OCR register power up not OK<br>Bit[30:29] Access mode: byte mode<br>Bit[7] High voltage Multimedia card                                                                                                                                                                  | CRC7 (h)<br>27<br>7F                                     | Frequency<br>187KHz<br>187KHz                                                                                       |
| 5327<br>5333<br>5333<br>5333<br>5333<br>5333<br>5333                                                 | Command<br>CMD01:SEND_OP_COND<br>CMD01:SEND_OP_COND                       | Response<br>R3 :Check bit(63)                      | Argument (h)<br>40 FC 00 00<br>00 FF 80 00<br>Bit[31] OCR register power up not OK<br>Bit[30:29] Access mode: byte mode<br>Bit[7] High voltage Multimedia card<br>40 FC 00 00                                                                                                                                                   | CRC7 (h)<br>27<br>7F<br>27                               | Frequency ▲<br>187KHz<br>187KHz<br>187KHz                                                                           |
| 5327<br>5333<br>5333<br>5333<br>5333<br>5333<br>5359<br>5364                                         | Command<br>CMD01:SEND_OP_COND<br>CMD01:SEND_OP_COND                       | Response<br>R3 :Check bit(63)<br>R3 :Check bit(63) | Argument (h)<br>40 FC 00 00<br>00 FF 80 00<br>Bit[31] OCR register power up not OK<br>Bit[30:29] Access mode: byte mode<br>Bit[7] High voltage Multimedia card<br>40 FC 00 00<br>00 FF 80 00                                                                                                                                    | CRC7 (h)<br>27<br>7F<br>27<br>27<br>7F                   | Frequency ▲<br>187KHz<br>187KHz<br>187KHz<br>187KHz<br>187KHz                                                       |
| 5327<br>5333<br>5333<br>5333<br>5333<br>5333<br>5333<br>5359<br>5364<br>5364                         | Command<br>CMD01:SEND_OP_COND<br>CMD01:SEND_OP_COND                       | Response<br>R3 :Check bit(63)<br>R3 :Check bit(63) | Argument (h)<br>40 FC 00 00<br>00 FF 80 00<br>Bit[31] OCR register power up not OK<br>Bit[30:29] Access mode: byte mode<br>Bit[7] High voltage Multimedia card<br>40 FC 00 00<br>00 FF 80 00<br>Bit[31] OCR register power up not OK                                                                                            | CRC7 (h)<br>27<br>7F<br>27<br>7F                         | Frequency         ▲           187КНz         187КНz           187КНz         187КНz           187КНz         187КНz |
| 5327<br>5333<br>5333<br>5333<br>5333<br>5333<br>5333<br>5359<br>5364<br>5364<br>5364                 | Command<br>CMD01:SEND_OP_COND<br>CMD01:SEND_OP_COND                       | Response<br>R3 :Check bit(63)<br>R3 :Check bit(63) | Argument (h)<br>40 FC 00 00<br>00 FF 80 00<br>Bit[31] OCR register power up not OK<br>Bit[30:29] Access mode: byte mode<br>Bit[7] High voltage Multimedia card<br>40 FC 00 00<br>00 FF 80 00<br>Bit[31] OCR register power up not OK<br>Bit[30:29] Access mode: byte mode                                                       | CRC7 (h)<br>27<br>7F<br>27<br>7F                         | Frequency         ▲           187KHz         187KHz           187KHz                                                |
| 5327<br>5333<br>5333<br>5333<br>5333<br>5333<br>5359<br>5364<br>5364<br>5364<br>5364                 | Command<br>CMD01:SEND_OP_COND<br>CMD01:SEND_OP_COND                       | Response<br>R3 :Check bit(63)<br>R3 :Check bit(63) | Argument (h)<br>40 FC 00 00<br>00 FF 80 00<br>Bit[31] OCR register power up not OK<br>Bit[30:29] Access mode: byte mode<br>Bit[7] High voltage Multimedia card<br>40 FC 00 00<br>00 FF 80 00<br>Bit[31] OCR register power up not OK<br>Bit[30:29] Access mode: byte mode<br>Bit[7] High voltage Multimedia card                | CRC7 (h)<br>27<br>7F<br>27<br>27<br>7F<br>7F             | Frequency         ▲           187KHz         187KHz           187KHz         187KHz           187KHz         □      |
| 5327<br>5333<br>5333<br>5333<br>5333<br>5333<br>5359<br>5364<br>5364<br>5364<br>5364<br>5364<br>5364 | Command<br>CMD01:SEND_OP_COND<br>CMD01:SEND_OP_COND<br>CMD01:SEND_OP_COND | Response<br>R3 :Check bit(63)<br>R3 :Check bit(63) | Argument (h)<br>40 FC 00 00<br>00 FF 80 00<br>Bit[31] OCR register power up not OK<br>Bit[30:29] Access mode: byte mode<br>Bit[7] High voltage Multimedia card<br>40 FC 00 00<br>00 FF 80 00<br>Bit[31] OCR register power up not OK<br>Bit[30:29] Access mode: byte mode<br>Bit[7] High voltage Multimedia card<br>40 FC 00 00 | CRC7 (h)<br>27<br>7F<br>27<br>27<br>7F<br>27<br>27<br>27 | Frequency ▲<br>187KHz<br>187KHz<br>187KHz<br>187KHz<br>187KHz<br>187KHz                                             |
| 5327<br>5333<br>5333<br>5333<br>5333<br>5359<br>5364<br>5364<br>5364<br>5364<br>5364<br>5364<br>5364 | Command<br>CMD01:SEND_OP_COND<br>CMD01:SEND_OP_COND<br>CMD01:SEND_OP_COND | Response<br>R3 :Check bit(63)<br>R3 :Check bit(63) | Argument (h)<br>40 FC 00 00<br>00 FF 80 00<br>Bit[31] OCR register power up not OK<br>Bit[32] Access mode: byte mode<br>Bit[7] High voltage Multimedia card<br>40 FC 00 00<br>Bit[31] OCR register power up not OK<br>Bit[30:29] Access mode: byte mode<br>Bit[7] High voltage Multimedia card<br>40 FC 00 00                   | CRC7 (h)<br>27<br>7F<br>27<br>7F<br>27<br>7F<br>27       | Frequency ▲<br>187KHz<br>187KHz<br>187KHz<br>187KHz<br>187KHz<br>187KHz<br>↓                                        |



| Data: |
|-------|
|-------|

|                                                                               | -              |          |          |       |          |            |            |         |            |             |                    |          |                    |
|-------------------------------------------------------------------------------|----------------|----------|----------|-------|----------|------------|------------|---------|------------|-------------|--------------------|----------|--------------------|
| Time/Div: 15 ns                                                               | ÷.             |          |          |       |          |            |            |         |            |             |                    |          |                    |
| Acquired: 19:57:5                                                             | 4 2.37494      | 15 ms    | 2.374975 | ēms   | 2.375005 | ms<br>I.I. | 2.375035   | ms 2    | 2.375065 n | ns 2.37509  | 5 ms               | 2.375125 | ims<br>I I I I I I |
|                                                                               | 00h            |          | 45h      | ţ     | 4        | 7h         |            | 00h     | 1          | 75h         |                    | 0        | 0h                 |
| 8 Clock                                                                       |                |          | 0 1      |       | 1        |            |            | 0 1     |            | 1 0 1       |                    | 1        |                    |
|                                                                               | ╷╞┛╺┶┝         |          | <b>0</b> |       |          |            | <u> </u>   | 0 1     | <u> </u>   | 1 0 1       | <u> </u>           | 1 0      | 1 0                |
|                                                                               | 1              |          |          | _     |          |            |            |         |            |             | _                  |          |                    |
| DATA 0 Data[0]                                                                | 0              |          | 1        | 0     |          | 1          | e          | )       |            | 1           |                    |          |                    |
| 1 Data[1]                                                                     |                |          | 0        |       |          | 1          | e          |         | 1          |             | ø                  |          |                    |
| 2 Data[2]                                                                     | 0              |          |          | 1     |          |            | e          | )       |            | 1           |                    | 0        |                    |
| 3 Data[3]                                                                     |                |          |          |       |          |            |            |         |            |             |                    |          |                    |
| MMC 0 Data[0]                                                                 |                |          |          |       | -        |            |            |         |            |             |                    | -        |                    |
|                                                                               |                |          |          |       |          |            |            |         |            |             |                    |          |                    |
|                                                                               |                |          |          |       |          |            |            |         |            |             |                    |          | Ţ                  |
|                                                                               |                |          |          |       |          |            |            |         |            |             |                    | :        |                    |
| Label Channel                                                                 | -              |          |          |       |          |            |            |         |            |             |                    |          |                    |
| CH-00         CH-00         CH-00           CH-01         CH-00         CH-00 | <b>ЛЛ )</b> Bu | 🗙 dat.   | A(MMC)   |       | -        |            |            |         |            |             |                    |          |                    |
| Timestamp                                                                     | State          | D0(h)    | D1(h)    | D2(h) | D3(h)    | D4(h)      | D5(h)      | D6(h)   | D7(h)      | Information | ı                  |          | •                  |
| 0.113335 ms                                                                   | Data           | 72       | 74       | ØD    | ØA       | 00         | 00         | 00      | 00         |             |                    |          |                    |
| 0.113655 ms                                                                   | Data           | 00       | AC       | CB    | D8       | 00         | 00         | 55      | AA         |             |                    |          |                    |
| 0.11397 ms                                                                    |                |          |          |       |          |            |            |         |            | CRC16 OK!   |                    |          |                    |
| 0.11435 ms                                                                    |                |          |          |       |          |            |            |         |            | CRC status: | non-e              | rroneous |                    |
| 2.369365 ms                                                                   | Data           | 42       | 66       | 00    | 00       | 00         | FF         | FF      | FF         | Write data  | block:             | 1        |                    |
| 2.369685 ms                                                                   | Data           | FF       | FF       | FF    | 01-      | 00         | 25         | FF      | FF         |             |                    |          |                    |
| 2.37 ms                                                                       | Data           | FF<br>FF | FF       | FF 00 | FF 00    | FF         | FF         | FF      | FF<br>FF   |             |                    |          |                    |
| 2.37032 ms                                                                    | Data           | 01       | 55       | 00    | 73       | 99         | 65         | 99      | 72         |             |                    |          |                    |
| 2.37095 ms                                                                    | Data           | 00       | 20       | 00    | ØF       | 00         | 25         | 47      | 00         |             |                    |          |                    |
| 2.37127 ms                                                                    | Data           | 75       | 00       | 69    | 00       | 64         | 00         | 65      | 00         |             |                    |          |                    |
| 2.371585 ms                                                                   | Data           | 2E       | 00       | 00    | 00       | 70         | 00         | 64      | 00         |             |                    |          |                    |
| 4                                                                             |                |          |          |       |          |            |            |         |            | •           |                    |          |                    |
|                                                                               |                |          |          |       |          |            |            |         |            |             |                    |          |                    |
|                                                                               |                |          |          |       |          | - Q        | <b>–</b> 4 | 413.609 | Hz 📕       | 412.704 H   | z <mark>A</mark> B | 188.679  | кна 🕒 🔟 🕮          |



## ModBus

Modbus 是一种串行通信协议,是 Modicon 于 1979 年,为使用可程序逻辑控制器(PLC)而发表的。事实上,它已经成为工业领域通信协议标准,并且现在是工业电子设备之间相当常用的连接方式。

#### 参数设置

| Modbus 参数设置                                                                                     | ×                        |
|-------------------------------------------------------------------------------------------------|--------------------------|
| 参数设置                                                                                            | 波形颜色                     |
| 通道设置<br>Modbus (Tx) CH 0 计<br>Modbus (Rx) CH 1 计<br>任 1 计                                       | Header                   |
| 总线分析设置<br>极性 Auto ▼<br>波特率 ▼ 自动侦测 9600 ▼<br>同位设置 None ▼<br>▼ 波形中显示刻度 ■ MSB First<br>■ LRC Check | LRC CRC CRC Stop Trailer |
| 分析范围<br>选择要分析的范围<br>起始位置 结束位置<br>缓冲区开头 ▼ 缓冲区结尾 ▼                                                |                          |
|                                                                                                 | 缺省 确定 取消                 |

Modbus(Tx): Modbus Tx 信号通道。

Modbus(Rx): Modbus Rx 信号通道,若勾选该项,会在报告窗口显示 ModBus Rx 译

码结果。

传输模式: 分为 ASCII 和 RTU 模式。

极性: 分 Auto, Idle high, Idle low 三种格式。



Auto: 自动侦测 Idle 时为 High or Low。

Idle high: Idle 状态时显示为 High。

**Idle low:** Idle 状态时显示为 Low。

自动侦测: 设置对方的波特率或者由系统自动侦测。

波特率(Baud Rate): 传送数据的速度,每秒钟多少位(bits per second),范围是

110-2M(bps) °

**同位设置(Baud Rate):** N-None Parity(无位)、O-Odd Parity(奇同位)、E-Even

Parity(偶同位)。

波形中显示刻度:在波形上面显示刻度。

MSB First: 缺省是 LSB First,选定时, Start Bit 之后为 MSB。

| Time/Div: 60 ns<br>Acquired: 15:03:23 | 1.0                  | us 51.52 us | 51.62 us | 51.72 us 51.82 us      | 51.92 us | 52.02 us | 52.12 us |
|---------------------------------------|----------------------|-------------|----------|------------------------|----------|----------|----------|
| Ty O Mor                              | Idle                 | Start       | Data: 7F | Stop                   | E        | 3reak    |          |
| Madbur                                |                      | · .         |          |                        |          |          |          |
| By 1 Mor                              | Break                | Idle        | Start    | Data: 7F               |          | Stop     | Idle     |
| Mailur -                              |                      |             |          |                        |          | · · ·    | · ·      |
| Pitabar                               |                      |             |          |                        |          |          | -        |
| Label Char                            | nnel 💶               |             |          |                        |          |          | •        |
| CH-00 CH-00 CH-00 CH-00               |                      | odbus)      | •        |                        |          |          |          |
| Timestamp                             | Field                | Parity      | ASCII    | Information            |          |          | <b>^</b> |
| -0.000495 ms                          | Data: 7E             |             | ~        | Data Rate: 33.333 Mbps |          |          |          |
| -0.00058 ms                           | Data: 7F             |             |          | (Rx)                   |          |          |          |
| 0.05148 ms                            | Data: 7F             |             |          |                        |          |          |          |
| 0.05157 ms                            | Data: 7F             |             |          | (Rx)                   |          |          |          |
| 0.10365 ms                            | Data: 7E             |             | ~        |                        |          |          |          |
| 0.103565 ms                           | Data: 7F             |             |          | (Rx)                   |          |          |          |
| 0.15563 ms                            | Data: 7F             |             |          | (Dec)                  |          |          |          |
| 0.155/2 MS                            | Data: /r<br>Dete: 7F |             |          | (xx)                   |          |          |          |
| 0.25909 113                           | Data: 7E             |             | ~        | ( <b>Py</b> )          |          |          |          |
| 0.21186 mg                            | Data: 7F             |             |          | (1x)                   |          |          |          |
| 0.31105 mg                            | Data: 7F             |             |          | (Pv)                   |          |          |          |
| 0.364035 ms                           | Data: 7E             |             | ~        | (104)                  |          |          |          |
| 101000000                             | 20001 12             |             |          |                        |          |          | <b>_</b> |
|                                       |                      |             |          |                        |          |          |          |
|                                       |                      |             |          | 8191997 <mark>B</mark> | 8191997  | B        | 0 🛛 🔟    |



# NAND Flash

闪存分为 NOR 型和 NAND 型, NAND Flash 相较于 NOR Flash 具有较高的储存 密度与较低的每位成本。然而 NAND Flash 的 I/O 接口并没有随机存取外部寻址 总线,它必须以区块性的方式进行读取, NAND Flash 在今天的随身碟与多数记 忆卡上都可看到。

#### 参数设定

| NAND Flash 参数设置                                                                                      |                                   | ×                                     |
|------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|
| 参数设置                                                                                                 |                                   |                                       |
|                                                                                                      |                                   | _ 送置信息                                |
| Device Width — 🖲 x8 — 🔿 x16 —                                                                        | #CE/RB                            | 制造厂家 Hynix ▼                          |
| ◎ I/O 信号自动递增                                                                                         | • x1 C x2 C x4                    | 피문 HY27SE081G2A                       |
| ○ I/O 信号自定义 ····                                                                                     |                                   | 型与 HY27SF161G2A                       |
|                                                                                                      | CE#1 CH 12 . K/6#1 CH 13 .        | HY27SF162G2B<br>HY27SF162G2B          |
| I/O0 (LSB) CH 0                                                                                      | CE#2 CH0 R/B#2 CH0                | HY27UF084G2M                          |
| I/O [7:0]                                                                                            |                                   | HY27UG088G5M<br>HY27UG088GDM          |
|                                                                                                      | CE#4 CHO 🔶 R/B#4 CHO 🛶            |                                       |
|                                                                                                      |                                   | · · · · · · · · · · · · · · · · · · · |
|                                                                                                      | ┌ Flash 初始模式设置 ─────              |                                       |
| RE# CH 10                                                                                            |                                   |                                       |
| WE# CH 11 .                                                                                          | L Toggle / ONFI DDR Mode          | Address 🗾 🗸                           |
| DQS CH 0 🚽                                                                                           | -Data Out Ourles                  | Busy                                  |
| Command Latch Cycle                                                                                  | TREA >= 20.0ns - tDQ5Q >= 5.0ns - | Data In                               |
| _tDS >= 5.0nstDH >= 5.0ns _                                                                          |                                   |                                       |
|                                                                                                      |                                   | Data Out                              |
|                                                                                                      |                                   | 分析范围                                  |
|                                                                                                      |                                   | 」 洗洗 选择要分析的范围                         |
| I 存储 NAND Flash Data                                                                                 | □ 忽略 CE# 信号                       | 2220000000000000000000000000000000000 |
| <ul> <li>Reduced Report</li> <li>         日          示 Toggle Data Output / Input Ti     </li> </ul> | ming                              |                                       |
| □ 忽略 R/B# 信号                                                                                         | -                                 | 結束位立 ) 透冲区结尾 💆                        |
| □ 波形区 Command 仅显示数值                                                                                  |                                   |                                       |
|                                                                                                      |                                   |                                       |
|                                                                                                      |                                   |                                       |
|                                                                                                      |                                   |                                       |

#### 通道设定:

| 异步模式 | 同步模式 | 说明                          |
|------|------|-----------------------------|
| I/Ox | DQx  | NAND Flash 数据通道             |
| CLE  | CLE  | Command Latch Enable 通道     |
| ALE  | ALE  | Address Latch Enable 通道     |
| RE   | W/R  | Read Enable 和 Write/Read 通道 |



| WE  | CLK | Write Enable 和 Clock 通道 |
|-----|-----|-------------------------|
| RB# | RB# | Ready/Busy 通道           |
| CE# | CE# | Chip Enable 通道          |
|     | DQS | Data Strobe 通道          |

Device Width: 设定 8/16 bits 数据信道

I/O 信号自动递增 / I/O 信号自动递减:选择 I/O 信号自动递增时,只需设定 I/O0 (LSB),其他通道程序会自动扩增;若选择 I/O 信号自定义,则需按下旁边 按键做通道设置。

| NAND Flag | sh I/O |       | ×      |
|-----------|--------|-------|--------|
|           |        |       |        |
| I/00      | сно    | I/08  | сно    |
| I/O1      | CH 1 ÷ | I/O9  | сно 📩  |
| I/02      | сн 2 🕂 | I/O10 | сно 🗾  |
| I/03      | снз    | I/011 | CH O 🗾 |
| I/04      | CH 4 . | I/012 | сно    |
| I/05      | сн 5 🕂 | I/013 | сно 🗧  |
| I/06      | сн 6 🕂 | I/014 | CH 8 🗾 |
| I/07      | сн 7 🕂 | I/015 | СН 9 🕞 |
|           | OK     |       | Cancel |

Flash 初始模式设定: 勾选 Toggle DDR Mode 启用同步模式

tREA / tDQSQ:设定 SDR / DDR 模式下,NAND 读取数据的延迟时间。 储存 NAND Flash Data:设定储存 Read/Write NAND Flash Data 当勾选储存 NAND Flash Data 时,程序会在 LA 工作目录下(默认路径:我的文档\Acute\),储 存该 NAND Flash Read/Write 之数据,该档案是 Bin 格式,文件名是以当时 NAND Flash 读写操作命名。

Reduced Report: 勾选 Reduced Report 可让报告窗口仅显示 NAND Flash Command

显示 DDR Data Output / Input Timing: 在 DDR 模式下勾选时会显示一些时



间信息。

波形区 Command 仅显示数值: 勾选时在波形区窗口中的NANDCommand仅会显示数值。

**忽略 ALE/CE#/RB# 信号:** 勾选时可以忽略该脚位信号,其中忽略 ALE 信号 时需选定 2 或是 3 byte Row Address。

以下是文件名分解为5个部份说明:

| 分解之文件名      | 说明                            |
|-------------|-------------------------------|
| NF_DI/NF_DO | NAND Flash Data In / Data Out |
| _Rowxxxxxh  | Row Address                   |
| _Colxxxh    | Column Address                |
| CEx         | 启用之 CEx                       |
| _1, _2, _3  | 档案出现顺序                        |

#### Ex:NF\_DI\_Row017821h\_Col0000h\_CE1\_1.bin

#### NF\_DO\_Row017821h\_Col0000h\_CE1\_2.bin

NF\_DO\_Row\_Col\_CE1\_3.bin

档案内容与 NAND Flash Bus Decode 波形文件报告窗口内容对照

| DO | Dl | D2 | D3 | D4 | D5 | D6 | D7 |
|----|----|----|----|----|----|----|----|
| 5A | A6 | 6F | 36 | B2 | 38 | B8 | B7 |
| 06 | 8A | B7 | 0B | B1 | 19 | C8 | 21 |
| 7E | CE | 58 | EF | BD | 18 | 47 | 70 |
| 5E | DD | 9A | E3 | A5 | E4 | 02 | 11 |
| E9 | 2D | 96 | 14 | 86 | 32 | CE | F4 |
| 53 | 10 | 60 | 79 | EA | B6 | D6 | CE |
| 5A | 22 | 53 | A5 | Fl | 9E | DB | 58 |
| 8A | 73 | B3 | B1 | 82 | 19 | B9 | 46 |
| 92 | 25 | 76 | EA | E4 | CE | 74 | A7 |
| 10 | E5 | 20 | 3D | 9F | 74 | BB | E5 |
| 55 | 54 | 68 | 40 | 69 | 86 | AC | OF |



000000 5A A6 6F 36 B2 38 B8 B7 06 8A B7 0B B1 19 C8 21 000010 7E CE 58 EF BD 18 47 7C 5E DD 9A E3 A5 E4 02 11 000020 E9 2D 96 14 86 32 CE F4 53 10 60 79 EA B6 D6 CE 000030 5A 22 53 A5 F1 9E DB 58 8A 73 B3 B1 82 19 B9 46 000040 92 25 76 EA E4 CE 74 A7 1C E5 20 3D 9F 74 BB E5 000050 55 54 68 4C 69 86 AC 0F F1 A2 47 FA 37 4B 04 0D

制造商:此功能主要是选择正确的型号,以便于命令解析用。若没找到完全符合

的型号时,使用者亦可选择命令格式相容的型号即可。当选择 Custom 项目时,

用户可以自行建立 NAND Flash 指令表,详细说明请参考下方。

**型号:**支援之 NAND Flash 型号。

**Custom 自行建立指令表说明:** 欲使用此功能,请先在 LA 工作目录下(默认路径: 我的文档\Acute\)建立 AqNFCustom.txt 档案。该档案内容如下:

Manufacturer=Samsung PartNo=K9XXXXXXXX #CE/RB=1 X16=N SyncMode=Y Cmd=Read, Read, tR, 60, , , N, N, 00, 30 Cmd=Read Status, Read Stat., , , , , Y, N, Y, 70 Cmd=Two-Plane Page Program, TPP Prog., tDBSY, 1, tPROG, 5000, N, Y, N, 80, 11, 81, 10

其中, Manufacturer, PartNo, #CE/RB, X16, SyncMode, Cmd 代表关键词,

| 关键词          | 说明                                |
|--------------|-----------------------------------|
| Manufacturer | NAND Flash 厂商名称。                  |
| PartNo       | NAND Flash IC 型号。                 |
| #CE/RB       | 使用几组 CE/RB,仅可输入 1/2/4。            |
| X16          | 使用 8 或 16 数据信道,仅可输入 Y/N,Y 表示使用 16 |
|              | 通道;N则使用8通道。                       |
| SyncMode     | 仅可输入 Y/N,Y:支持同步模式;N:不支持同步模式。      |
| Cmd          | Cmd 内容由逗号隔开,分别说明如下:               |
|              | 1. 完整指令名称。                        |
|              | 2. 缩写指令名称。                        |

必须输入且不可修改,说明如下:



| 3. 第一组 Busy Time Check 名称。若无则免填。     |
|--------------------------------------|
| 第一组 Busy Time Check 数值。单位为 us。若无则免填。 |
| 第二组 Busy Time Check 名称。若无则免填。        |
| 第二组 Busy Time Check 数值。单位为 us。若无则免填。 |
| 第一个旗标。该旗标代表该指令是否可作用在 Busy            |
| 状态中。                                 |
| 第二个旗标。该旗标代表该指令是否允许被某些特定              |
| 指令插入。                                |
| 第三个旗标。该旗标代表该指令是否允许插入某些多              |
| 阶指令中。                                |
| 指令。可填入1-4个指令,以逗号做区隔。                 |

Ex: Cmd=Read, Read, tR, 60, , , N, N, N, 00, 30

Cmd=Read Status, Read Stat., , , , , Y, N, Y ,70

Cmd=Two-Plane Page Program, TPP Prog., tDBSY, 1, tPROG, 5000, N, Y, N,

80, 11, 81, 10

Read Status / Two-Plane Page Program 说明:完整指令名称。

Read Stat. / TPP Prog. 说明: 缩写指令名称,因为有些指令太长会在波形区无法 完全显示,所以需要输入缩写指令名称。

Busy Time 检查(tDBSY, 1, tPROG, 5000) 说明:表示tDBSY为 lus, tPROG为 5000us, Busy Time 若超过此数值,会在报告窗口中显示该信息,若不填入此数 值,即不检查Busy Time,此时请输入空白并加上逗号,至于tDBSY和tPROG字 符串名称并非固定,可以由使用者自行定义。

3个旗标说明:以Cmd=Read Status, Read Stat., Y, N, Y, 70 为例,第1个旗标为Y 表示该指令可作用于Busy状态,第2个旗标为N 表示该指令不允许被某些特定指



令插入,第3个旗标为Y 表示该指令允许插入某些多阶指令中。例如 Read Status 70h 允许插入于Two-Plane Page Program 80h, 11h, 81h, 10h 的 11h和81h 之间。 执行NAND Flash总线分析,选择Custom,会在型号中显示在AqNFCustom.txt 档 案中输入之厂商名称和型号;也会按照输入的指令显示分析结果。



#### 分析结果

SDR Data In 模式

| 7.1                                   | Idle Col. 00 Col. 00   | Row B2 Row 26       | Idle DI           | :48 DI:83         | DI: 2E      | DI: DB   | DI: FD            |
|---------------------------------------|------------------------|---------------------|-------------------|-------------------|-------------|----------|-------------------|
| 7 4/                                  | (01                    |                     |                   | 1 44u             | 720n        | 2.10     |                   |
| 0.1                                   | (02                    | 1.44u               | 960n              | 2.88u             |             |          | 20n               |
| 9.1/                                  | 1/02                   | 720n                | 2.4u              |                   | 720n 7      | 20n      | 20n               |
| 10                                    | 1/03                   |                     | 720n              | 720n              |             | 2.88u    |                   |
| 11                                    |                        | 720n                | 3.84u             |                   |             | 1.44u    | 720n              |
| 12.<br>10.                            |                        | 1.44u               | 2.4u              |                   | 720n 7      | 20n      |                   |
| ULE 13.                               | 1/06                   |                     | 720n              | 1.44u             |             | 1.44u    | 720n              |
| 14.                                   |                        | 720n                | 2.4u              | 720n              | 720n        | 1.44u    |                   |
| UC                                    |                        |                     |                   |                   |             |          |                   |
| 1 A                                   |                        |                     |                   |                   |             |          |                   |
| 5 R                                   |                        |                     |                   |                   |             |          |                   |
| 2 1                                   | VE 240n 480n 240n 480n | 240n 480n 240n 480n | 480n 480n 240n    | 480n 240n 480n    | 240n 480n 2 | 40n 480n | 40n 480n 240n     |
| 6 C                                   | E1                     |                     |                   |                   |             |          |                   |
| Nand Flank 4 R                        | /B1                    |                     |                   |                   |             |          | <b></b>           |
| Label Ch                              | annel                  |                     |                   |                   |             |          |                   |
| ⊙/∰ <u>CH-00</u> CH-00<br>CH-01 CH-00 | CLE(Nand Flash)        | •                   |                   |                   |             |          |                   |
| Timestamp                             | Command                | Row Address(h)      | Column Address(h) | D0 D1             | D2 D3       | D4       | D5 D6             |
| 2.539085 ms                           | PAGE PROGRAM #1(80)    | 0026B2              | 0000              | 4B 83             | 2E DB       | FD       | 2B 72             |
| 2.549885 ms                           |                        | 0026B2              | 0008              | 44 4F             | D1 05       | CD       | F4 AA             |
| 2.555645 ms                           |                        | 0026B2              | 0010              | BD 12             | 3E 7B       | 91       | AF 00 🛄           |
| 2.561405 ms                           |                        | 0026B2              | 0018              | 94 58             | 3A C7       | 67       | 61 90             |
| 2.567165 ms                           |                        | 0026B2              | 0020              | F9 37             | FC C3       | 19       | FF 87             |
| 2.572925 ms                           |                        | 0026B2              | 0028              | 2E F4             | 49 98       | 7A       | 44 29             |
| 2.578685 ms                           |                        | 002682              | 0030              | 7D EE             | B9 CC       | E7       | 88 21             |
| 2.584445 118                          |                        | 002682              | 0038              | F3 85             | 38 97       | 54       | CD A4             |
| 2.590205 ms                           |                        | 002682              | 0040              | 9A 21             | E3 FF       | ZE       | FA 92             |
| 2.595905 HS                           |                        | 002682              | 0040              | DC CZ             | 8F 11       | 75       | 71 CC             |
| 2.607485 ms                           |                        | 002682              | 0058              | 44 7F             | 79 FA       | A7       | 56 3E             |
|                                       |                        | 000005              | 0000              |                   |             |          |                   |
|                                       |                        |                     |                   |                   |             |          |                   |
|                                       |                        |                     | В                 | 12 <mark>A</mark> | 49792       | A<br>B   | <b>472426</b> ⊡∭∰ |



| DDR Data                                                     | Out 模式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                            |                                                                                                                              |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| CMD 70<br>10<br>10<br>10<br>10<br>10<br>12<br>11<br>14<br>13 | Idle         DI: \$A         DI: 6E           Q1         25n         12.5n           Q2         37.5n         25n           Q3         12.5n         12.5n           Q4         12.5n         12.5n           Q5         12.5n         12.5n           Q6         12.5n         25n           Q6         12.5n         25n           Q6         12.5n         25n           Q6         12.5n         25n           Q7         22.5n         25n           Q6         12.5n         25n           Q7         22.5n         25n           Q6         12.5n         25n           Q6         12.5n         12.5n           Q7         22.5n         25n           Q8         22.5n         25n           Q9         22.5n         25n           Q1         25n         25n           Q6         22.5n         25n           Q7         22.5n         25n           Q8         22.5n         25n           Q9         22.5n         25n | DI 36 DI 82 DI 38<br>50n<br>25n<br>25n<br>25n<br>25n<br>62.5n<br>62.5n<br>12.5n<br>12.5n<br>12.5n<br>12.5n | DI: 88 DI: 87<br>12:5n<br>25n<br>25n<br>137.<br>25n<br>12:5n<br>12:5n | DI: 06 DI:<br>25n 62.5n<br>12.5n 72.5n<br>12.5n 72.5n<br>12.5n 73.70<br>12.5n 73.70<br>12.5n 73.70<br>12.5n 73.70<br>12.5n 73.70<br>12.5n 73.70<br>12.5n 73.70<br>12.5n 73.70<br>13.50 75.70<br>13.50 75.70<br>15.50 75. | 8A DI: B7 D<br>15n 12.5n 1 | 11 08 DI: 81<br>0n<br>12.5n<br>12.5n<br>12.5n<br>12.5n<br>12.5n<br>2.5n<br>12.5n<br>12.5n | DI: 19 DI: (<br>12.5n ]<br>50n 25n 25n 25n 25n 25n 25n 12.5n 12. | 2 DI 21 D<br>22.5n<br>22.5n<br>25.5n<br>25.5n<br>25.5n<br>25.5n<br>25.5n<br>25.5n<br>25.5n | 17 E 01 CE 01<br>37.5n<br>5n 12.5n<br>12.5n<br>12.5n<br>12.5n<br>12.5n<br>12.5n<br>12.5n<br>12.5n<br>12.5n<br>12.5n<br>12.5n |
|                                                              | nanne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                            |                                                                                                                              |
| Timestamp                                                    | Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Row Address(h)                                                                                             | Column Ad                                                             | dress(h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DO D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 D2                                                                                      | D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D4 D                                                                                       | 5 D6 1                                                                                                                       |
| 0.0150275 ms                                                 | Two-Plane Cache Program #1(80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 017821                                                                                                     | 0000                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .6 6F                                                                                     | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B2 3                                                                                       | .8 B8                                                                                                                        |
| 0.0174175 ms                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 017821                                                                                                     | 0008                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A B7                                                                                      | OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B1 1                                                                                       | .9 C8                                                                                                                        |
| 0.0175175 ms                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 017821                                                                                                     | 0010                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7E C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E 58                                                                                      | EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BD 1                                                                                       | 8 47                                                                                                                         |
| 0.0176175 ms                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 017821                                                                                                     | 0018                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5E D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D 9A                                                                                      | E3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A5 E                                                                                       | 4 02                                                                                                                         |
| 0.0177175 ms                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 017821                                                                                                     | 0020                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D 96                                                                                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86 3                                                                                       | 2 CE                                                                                                                         |
| 0.0178175 ms                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 017821                                                                                                     | 0028                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 60                                                                                      | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EA B                                                                                       | 6 D6                                                                                                                         |
| 0.0179175 ms                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 017821                                                                                                     | 0030                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5A 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 53                                                                                      | A5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F1 9                                                                                       | E DB                                                                                                                         |
| 0.0180175 ms                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 017821                                                                                                     | 0038                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8A 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 B3                                                                                      | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82 1                                                                                       | 9 B9                                                                                                                         |
| 0.0181175 ms                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 017821                                                                                                     | 0040                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 76                                                                                      | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E4 C                                                                                       | E 74                                                                                                                         |
| 0.0182175 ms                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 017821                                                                                                     | 0048                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1C E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 20                                                                                      | 3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9F 7                                                                                       | 4 BB                                                                                                                         |
| 0.0183175 ms                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 017821                                                                                                     | 0050                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 68                                                                                      | 4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 69 8                                                                                       | 6 AC                                                                                                                         |
| 0.0184175 ms                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 017821                                                                                                     | 0058                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fl A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .2 47                                                                                     | FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37 4                                                                                       | B 04 ,                                                                                                                       |
| •                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                            | Þ                                                                                                                            |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                                                                       | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4063231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A<br>C                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>4</b> 0                                                                                 | 95999 🕒 🛙 🚺                                                                                                                  |
| CE x 2 Dat                                                   | a Out 模式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                            |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                            |                                                                                                                              |
|                                                              | DO: FF DO: FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DO: FF DO:                                                                                                 | FF                                                                    | O: FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DO: FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DO: FF                                                                                    | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : FF                                                                                       | 00: FF   -                                                                                                                   |

|                                                                                                                                                                                                                                                                                                                                                                                                                             | DO: FF         | DO: FF                                  | DO: FF                                                                                                   | DO: FF                                                                                                                                           | DO: FF                                                                                                                                     | DÒ        | : FF                                                                                                                                                                                                                                                            | DO: F                                                                                                                                                                                                                                                                               | F                                                              | DO: FF                                                               | DC                                                                                                                                                                                                                                                                                                                                                   | : FF                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 5 I/00                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                         |                                                                                                          |                                                                                                                                                  |                                                                                                                                            |           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                    |
| 6 I/O1                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                         |                                                                                                          |                                                                                                                                                  |                                                                                                                                            |           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                    |
| 7 I/O2                                                                                                                                                                                                                                                                                                                                                                                                                      | 2              |                                         |                                                                                                          |                                                                                                                                                  |                                                                                                                                            |           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                    |
| 81/03                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                         |                                                                                                          |                                                                                                                                                  |                                                                                                                                            |           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                    |
| 9 1/04                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                         |                                                                                                          |                                                                                                                                                  |                                                                                                                                            |           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                             |                                                                                    |
| 10 1/0                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                         |                                                                                                          |                                                                                                                                                  |                                                                                                                                            |           | _                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                             |                                                                                    |
| NAND Bus 12 I/C                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                         |                                                                                                          |                                                                                                                                                  |                                                                                                                                            |           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                    |
| 15 CL                                                                                                                                                                                                                                                                                                                                                                                                                       | Ĩ              |                                         |                                                                                                          |                                                                                                                                                  |                                                                                                                                            |           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                    |
| 14 AL                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                         |                                                                                                          |                                                                                                                                                  |                                                                                                                                            |           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                    |
| 2 RE                                                                                                                                                                                                                                                                                                                                                                                                                        | 15n 15n        | 10n 15n                                 | 15n                                                                                                      | 10n 15n 15r                                                                                                                                      | 10n 15n                                                                                                                                    | 15n       | 10n                                                                                                                                                                                                                                                             | 15n                                                                                                                                                                                                                                                                                 | 15n                                                            | 10n 15r                                                              | 15n                                                                                                                                                                                                                                                                                                                                                  | 10n                                                                                                                                                                                                                                                                                                           | 15n                                                                                |
| 13 WB                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                         |                                                                                                          |                                                                                                                                                  |                                                                                                                                            |           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                    |
| 1 CE1                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                         |                                                                                                          |                                                                                                                                                  |                                                                                                                                            |           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                    |
| 3 R/B1                                                                                                                                                                                                                                                                                                                                                                                                                      | 1              |                                         |                                                                                                          |                                                                                                                                                  |                                                                                                                                            |           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                    |
| U CE2                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                         |                                                                                                          |                                                                                                                                                  |                                                                                                                                            |           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                             |                                                                                    |
| NandFlark 1 N/DZ                                                                                                                                                                                                                                                                                                                                                                                                            | -              |                                         |                                                                                                          |                                                                                                                                                  |                                                                                                                                            | -         | -                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                             |                                                                                    |
| Label Chan                                                                                                                                                                                                                                                                                                                                                                                                                  | nel 💶          |                                         |                                                                                                          |                                                                                                                                                  |                                                                                                                                            |           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                    |
| CH-00 CH-00                                                                                                                                                                                                                                                                                                                                                                                                                 |                | Bus(Nand Flash)                         | -                                                                                                        |                                                                                                                                                  |                                                                                                                                            |           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                    |
| CH-01 CH-00                                                                                                                                                                                                                                                                                                                                                                                                                 | A CAL NEW LINE | ,                                       |                                                                                                          |                                                                                                                                                  |                                                                                                                                            |           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                    |
| Timestamp                                                                                                                                                                                                                                                                                                                                                                                                                   | Command        |                                         | F                                                                                                        | Row Address(h)                                                                                                                                   | Column Add                                                                                                                                 | lress(h)  | DO                                                                                                                                                                                                                                                              | Dl                                                                                                                                                                                                                                                                                  | D2                                                             | D3                                                                   | D4                                                                                                                                                                                                                                                                                                                                                   | D5                                                                                                                                                                                                                                                                                                            | De                                                                                 |
| Timestamp<br>0.00071045 S                                                                                                                                                                                                                                                                                                                                                                                                   | Connand        |                                         | F                                                                                                        | Row Address(h)                                                                                                                                   | Column Add                                                                                                                                 | lress(h)  | D0<br>FF                                                                                                                                                                                                                                                        | D1<br>FF                                                                                                                                                                                                                                                                            | D2<br>FF                                                       | D3<br>FF                                                             | D4<br>FF                                                                                                                                                                                                                                                                                                                                             | D5<br>FF                                                                                                                                                                                                                                                                                                      | Dt A                                                                               |
| Timestamp           0.00071045 \$           0.000710665 \$                                                                                                                                                                                                                                                                                                                                                                  | Command        |                                         | F                                                                                                        | Row Address(h)<br>008E00<br>008E00                                                                                                               | Column Add<br>0378<br>0380                                                                                                                 | iress (h) | D0<br>FF<br>FF                                                                                                                                                                                                                                                  | D1<br>FF<br>FF                                                                                                                                                                                                                                                                      | D2<br>FF<br>FF                                                 | D3<br>FF<br>FF                                                       | D4<br>FF<br>FF                                                                                                                                                                                                                                                                                                                                       | D5<br>FF<br>FF                                                                                                                                                                                                                                                                                                | D( A                                                                               |
| Timestamp         0.00071045         S           0.000710665         S         0.00071088         S                                                                                                                                                                                                                                                                                                                         | Command        |                                         | 4                                                                                                        | Row Address(h)<br>008E00<br>008E00<br>008E00                                                                                                     | Column Add<br>0378<br>0380<br>0388                                                                                                         | lress(h)  | D0<br>FF<br>FF<br>FF                                                                                                                                                                                                                                            | D1<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                                | D2<br>FF<br>FF<br>FF                                           | D3<br>FF<br>FF<br>FF                                                 | D4<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                                                                                                 | D5<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                                                          | Dt A<br>FI<br>FI<br>FI                                                             |
| Timestamp         0.00071045 \$         0.000710655 \$           0.00071088 \$         0.00071088 \$         0.00071098 \$                                                                                                                                                                                                                                                                                                  | Command        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | F                                                                                                        | Row Address(h)<br>008E00<br>008E00<br>008E00<br>008E00                                                                                           | Column Add<br>0378<br>0380<br>0388<br>0390                                                                                                 | lress (h) | D0<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                | D1<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                          | D2<br>FF<br>FF<br>FF<br>FF                                     | D3<br>FF<br>FF<br>FF<br>FF<br>FF                                     | D4<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                                                                                           | D5<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                                                    | De A<br>Fl<br>Fl<br>Fl<br>Fl                                                       |
| CHOI         CHOI           Timestamp         0.00071045 \$           0.000710665 \$         0.000710665 \$           0.00071088 \$         0.00071109 \$           0.000711305 \$         0.000711305 \$                                                                                                                                                                                                                   | Command        |                                         |                                                                                                          | Row Address(h)<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00                                                                                 | Column Add<br>0378<br>0380<br>0388<br>0390<br>0398                                                                                         | iress(h)  | D0<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                          | D1<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                    | D2<br>FF<br>FF<br>FF<br>FF<br>FF                               | D3<br>FF<br>FF<br>FF<br>FF<br>FF                                     | D4<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                                                                               | D5<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                                              | D( A<br>F]<br>F]<br>F]<br>F]<br>F]                                                 |
| Timestamp           0.00071045 S           0.000710665 S           0.00071088 S           0.00071089 S           0.00071109 S           0.000711305 S           0.00071152 S                                                                                                                                                                                                                                                | Command        |                                         |                                                                                                          | Row Address(h)<br>008E00<br>008E00<br>008E00<br>008E00<br>008E00                                                                                 | Column Add<br>0378<br>0380<br>0388<br>0390<br>0398<br>0398<br>0340                                                                         | lress(h)  | D0<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                          | D1<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                              | D2<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                   | D3<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                               | D4<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                                                                               | D5<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                                        | De FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI                                          |
| Timestamp           0.00071045 S           0.000710665 S           0.00071068 S           0.00071109 S           0.000711305 S           0.00071152 S           0.00071173 S           0.000711445 C                                                                                                                                                                                                                        | Command        |                                         |                                                                                                          | Row Address(h)<br>008E00<br>008E00<br>008E00<br>008E00<br>008E00<br>008E00<br>008E00                                                             | Column Add<br>0378<br>0380<br>0398<br>0390<br>0398<br>03A0<br>03A8<br>03A0                                                                 | iress (h) | D0<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                              | D1<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                  | D2<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                   | D3<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                         | D4<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                                                                   | D5<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                                  | De F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F                             |
| Timestam           0.00071045 S           0.000710665 S           0.00071068 S           0.00071109 S           0.0007113 S           0.0007113 S           0.00071173 S           0.000711945 S           0.00071126 S                                                                                                                                                                                                     | Command        |                                         |                                                                                                          | Row Address(h)<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00                                                   | Column Add<br>0378<br>0380<br>0398<br>0390<br>0398<br>03A0<br>03A8<br>03B0<br>03B8                                                         | iress (h) | D0<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                              | D1<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                  | D2<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF       | D3<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                   | D4<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                                                                   | D5<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                      | D(<br>F)<br>F)<br>F)<br>F)<br>F)<br>F)<br>F)<br>F)<br>F)<br>F)<br>F)<br>F)         |
| Timestam           0.00071045 S           0.00071045 S           0.00071045 S           0.00071045 S           0.00071109 S           0.00071130 S           0.00071135 S           0.00071145 S           0.00071145 S           0.00071126 S           0.00071124 S           0.00071245 S           0.00071245 S                                                                                                         | Command        |                                         |                                                                                                          | Row Address(h)<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00                                         | Column Add<br>0378<br>0380<br>0398<br>0390<br>0398<br>0340<br>0348<br>0360<br>0388<br>0360                                                 | iress (h) | D0<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                              | D1           FF           FF | D2<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF       | D3<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF             | D4<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                                                                   | D5<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                      | D(<br>F)<br>F)<br>F)<br>F)<br>F)<br>F)<br>F)<br>F)<br>F)<br>F)<br>F)<br>F)<br>F)   |
| Timestam           0.00071045 S           0.00071045 S           0.000710665 S           0.000711305 S           0.00071132 S           0.00071246 S           0.00071237 S           0.000712385 S | Command        | ,                                       |                                                                                                          | Row Address(h)<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00                     | Column Add<br>0378<br>0380<br>0380<br>0390<br>0396<br>03A0<br>03A0<br>03A0<br>03A8<br>03B0<br>03B8<br>03C0<br>03C0<br>03C6                 | lress (h) | DO<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                  | D1<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                | D2<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF       | D3<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF | D4           FF           FF | D5           FF           FF | Dr A<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI             |
| Timestamp           0.00071045 S           0.000710665 S           0.00071109 S           0.00071109 S           0.00071109 S           0.00071130 S           0.00071132 S           0.00071124 S           0.00071237 S           0.0007128 S                                                                                                                                                                             | Command        |                                         |                                                                                                          | Row Address(h)<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00 | Column Add<br>0378<br>0380<br>0386<br>0390<br>0386<br>0380<br>0380<br>0380<br>0380<br>0388<br>0380<br>0388<br>0360<br>0368<br>0360<br>0368 | iress(h)  | DO<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                            | D1<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                      | D2<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF | D3<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF | D4           FF           FF | D5<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                | Dr A<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI       |
| Timestamp           0.00071045 S           0.00071065 S           0.00071003 S           0.00071109 S           0.00071130 S           0.00071132 S           0.00071145 S           0.00071138 S           0.00071138 S           0.00071138 S           0.00071138 S           0.00071216 S           0.00071237 S           0.000712585 S           0.0007128 S                                                          | Command        |                                         | <b>F</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b> | Row Address(h)<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00           | Column Add<br>0378<br>0380<br>0380<br>0390<br>0380<br>0380<br>0380<br>0380<br>038                                                          | iress(h)  | D0<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                            | D1<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                      | D2<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF | D3<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF | D4<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                                                 | D5<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                | Dr A<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI<br>FI                   |
| Timestam         One           0.00071045 S         0.00071045 S           0.00071045 S         0.0007109 S           0.00071130 S         0.00071130 S           0.00071132 S         0.00071173 S           0.000711945 S         0.00071245 S           0.00071268 S         0.0007128 S           0.0007128 S         0.0007128 S                                                                                       | Command        |                                         | <b>A</b><br><b>A</b><br><b>A</b><br><b>A</b><br><b>A</b><br><b>A</b><br><b>A</b><br><b>A</b>             | Row Address(h)<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00 | Column Add<br>0378<br>0380<br>0390<br>0398<br>0380<br>0388<br>0380<br>0388<br>0380<br>0388<br>0320<br>0368<br>0300                         | iress(h)  | D0<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                  | D1<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                      | D2<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF | D3<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF | D4<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                                                                       | D5<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                          | Dr A<br>FJ<br>FJ<br>FJ<br>FJ<br>FJ<br>FJ<br>FJ<br>FJ<br>FJ<br>FJ<br>FJ<br>FJ<br>FJ |
| Timestamp<br>0.00071045 S<br>0.00071045 S<br>0.0007109 S<br>0.000711305 S<br>0.000711305 S<br>0.000711345 S<br>0.000711945 S<br>0.000711945 S<br>0.00071285 S<br>0.00071285 S<br>0.00071285 S                                                                                                                                                                                                                               | Command        |                                         | <b>A</b><br><b>A</b><br><b>A</b><br><b>A</b><br><b>A</b><br><b>A</b><br><b>A</b><br><b>A</b>             | Row Address(h)<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00<br>108E00 | Column Add<br>0376<br>0380<br>0398<br>0390<br>0398<br>0340<br>0388<br>0380<br>0388<br>0380<br>0388<br>0350<br>0388<br>0350                 | iress(h)  | D0           FF           State           34282 | D1<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                            | D2<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF | D3<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF | D4<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>94752                                                                                                                                                                                                                                                                              | D5<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF<br>FF                                                                                                                                                                                                                                          | Dr A                                                                               |


## NEC IR

参数设置

| NEC 参数记       | 投置                |          |          | ×       |
|---------------|-------------------|----------|----------|---------|
| 参数设置          |                   | ——波形颜色   |          |         |
| :             | NEC Channel       | <b>m</b> | Leader   | <b></b> |
| • <i>-µ</i> ≠ | сно               | -        | Address  |         |
|               | □ 激活 Extended 模式  |          | /Address | <b></b> |
|               | ▼ Report 不显示 Idle |          | Command  |         |
|               | □ 高低比特互换          |          | /Command | <b></b> |
|               | 极性 Auto 💌         |          | Repeat   | <b></b> |
|               |                   |          | Stop     | ▼       |
| 分析范围          |                   |          |          |         |
| inn:          | 选择要分析的范围          |          |          |         |
| <b>*</b>      | 起始位置              | 结束位置     |          |         |
|               | 缓冲区开头 🔻           | 缓冲区结尾    | •        |         |
|               |                   | 一一缺省     | 确定       |         |

参数设置:设置 NEC 的信号接在 LA 的通道编号。

**执行 Extended 模式:** 当 Extended 启用时,会将 /Address 和 Address 合并, 变为 16 Bits 的 Address。/Command 和 Command 合并,变为 16 Bits 的 Command。

**Report 不显示 Idle:** 勾选此项, Report 区会将不会有 Idle 的数据, 方便使用 者观察分析结果。

高低比特互换: 勾选此项,数据将会由原本的 LSB First,转换为 MSB First,方 便使用者观察分析结果。

极性:分 Auto, Idle high, Idle low 三种格式。

Auto: 自动侦测 Idle 时为 High or Low。

Idle high: Idle 状态时显示为 High。



Idle low: Idle 状态时显示为 Low。

#### 分析结果





## PECI

PECI(Platform Environment Control Interface) 是由英特尔(Intel)所开发出的总线, 应用在硬件的监测控制芯片,包括电压、温度、系统异常等监测。

参数设置

| PECI 参数 | 没置                                       |
|---------|------------------------------------------|
| 参数设置    |                                          |
| =       | 通道设置———————————————————————————————————— |
|         | Data CH D 🛉 💿 一般 🔿 进阶                    |
| 波形颜色    |                                          |
|         | 设置数据的颜色                                  |
|         | Sync 🔽                                   |
|         | Address 🔽                                |
|         | WL/RL                                    |
|         | FCS                                      |
|         | Data 🗾 💌                                 |
| 范围选择    |                                          |
| 殿       | 选择要分析的范围                                 |
|         | 起始位置                                     |
|         | 緩冲区开头                                    |
|         | 缺省 确定 取消                                 |

Data: PECI 数据

报告格式:可选择一般、进阶模式,进阶模式会显示较仔细的信息。



一般模式下的报告显示



进阶模式下的报告显示

| Time/Div: 5 us 📴                                  |                |                |                               |                       |
|---------------------------------------------------|----------------|----------------|-------------------------------|-----------------------|
| Acquired: 10:26                                   | 1.9\$ 1.9\$    | 1.95 1.95 1.95 | 1.9S 1.                       | 95 1.95               |
|                                                   |                |                | RdLen:02                      | CMD GetTemp(01)       |
|                                                   |                |                |                               |                       |
| PECI                                              |                |                |                               |                       |
| Label                                             |                |                |                               |                       |
| CH-00         CH-00           CH-01         CH-00 |                | •              |                               |                       |
| Timestamp                                         | Field          | Data           | Status                        | Information 🔺         |
| 1.85005855 \$                                     | FCS            | B8             |                               |                       |
| 1.8999695 %                                       | Client Address | 30             |                               |                       |
| 1.89998595 \$                                     | Write Length   | 01             |                               |                       |
| 1.90000065 \$                                     | Read Length    | 02             |                               |                       |
| 1.9000153 S                                       | Cmd Code       | GetTemp(01)    |                               |                       |
| 1.90002995 \$                                     | FCS            | EF             |                               |                       |
| 1.90004465 \$                                     | Temp[7:0]      | A5             |                               |                       |
| 1.9000593 \$                                      | Temp[15:8]     | F9             |                               | Temperature: 26.641 — |
| 1.9000593 \$                                      | FCS            | B8             |                               |                       |
| 1.9499686 5                                       | Client Address | 30             |                               |                       |
| 1.9499851 \$                                      | Write Length   | 01             |                               |                       |
| 1.94999975 \$                                     | Read Length    | 02             |                               |                       |
| 1.9500144 %                                       | Cmd Code       | GetTemp(01)    |                               |                       |
| 1.95002905 \$                                     | FCS            | EF             |                               |                       |
| 1.95004375 \$                                     | Temp[7:0]      | A7             |                               |                       |
|                                                   |                |                |                               | Þ                     |
|                                                   |                | A 3799         | 98690 <mark>B</mark> 37998690 | o 🔒 🛛 o 🕒 🕅           |



## **PMBus**

Artesyn 技术公司联合了各大电源与半导体厂商,全力开发电源管理通信的标准 协议。该组织于 2005 年 3 月发布了 PMBus 规范。PMBus 规范可为数据传输、 命令与数据格式提供开放式标准,从而能够"模仿"智慧电池的标准。

#### 参数设置

| PMBus 参赛   | 教设置                                       | <u>×</u>    | 1 |
|------------|-------------------------------------------|-------------|---|
| 通道设置       |                                           | 波形颜色        |   |
| - n        | Clock Channel (SCK) CH 0                  | 设置数据特性的颜色   |   |
| 1          | Data Channel (SDA)                        | Start       |   |
|            |                                           | Address 📃 👻 |   |
|            | □ 是否解析PEC                                 | Write       |   |
|            | 7-bit addressing (Include R/W in Address) | s) Read     |   |
|            | ☑ 忽略毛刺                                    | Command 📃 🗸 |   |
| 选择范围       |                                           | Data 📃 🔽    |   |
|            | 选择要分析的范围                                  | PEC         |   |
| <b>*</b> * | 起始位置 缓冲区开头 💌                              | ACK         |   |
|            | 结束位置 缓冲区结尾 💌                              | Stop 🔽      |   |
|            |                                           |             |   |
|            |                                           | 缺省 确定 取消    |   |

Clock Channel (SCK): PMBus 数据传输之 Clock。

Data Channel (SDA): PMBus 数据传输之 Data。

是否解析 PEC: 设置分析的数据是否包含 PEC。

7-bit addressing (Include R/W in Address):显示 8 位宽度地址(7 位宽度加上1

位 Rd/Wr)。

忽略毛刺:分析时忽略因跳变存储过缓造成的毛刺。



|               | 2        |           |            |            |                        |                   |          |          |          |           |                   |
|---------------|----------|-----------|------------|------------|------------------------|-------------------|----------|----------|----------|-----------|-------------------|
|               |          | Address:3 |            |            | Extended Cmd:FE        |                   | (        | ommand:5 | 5D       |           |                   |
| PM Bus O SCK  |          |           |            |            |                        |                   |          |          |          |           |                   |
| 1 SDA         |          | 15u       | 2.5u       |            | 20u 2.5u2.             | 5u2.5u2.5         | u 2.5u   | 7.5ú     | 2.       | 5u        |                   |
|               |          |           |            |            |                        |                   |          |          |          |           |                   |
| Label Channel |          |           |            |            |                        | 1                 | -        |          | - 1      |           |                   |
| Timestamp     | Start    | Address   | Read/Write | Ack        | Command                | Ack               | Data     | Ack      | Data     | Ack       | Dat               |
| 0.07999 ms    | start    | ЗF        | Write      | No Ack     | EXTENDED (FE)          | No Ack            |          |          |          |           |                   |
| 0.12405 ms    |          |           |            |            | IIN_OC_WARN_LIMIT (5D) | No Ack            | 6E       | No Ack   |          |           |                   |
| 0.19656 ms    | start    | 46        | Write      | No Ack     | VOUT_COMMAND (21)      | No Ack            | ЗA       | No Ack   | 8B       | No Ack    | 92                |
| 0.33315 ms    |          |           |            |            |                        |                   | B4       | No Ack   | C5       | No Ack    |                   |
| 0.40367 ms    | start    | 12        | Write      | No Ack     | EXTENDED (FE)          | No Ack            |          |          |          |           |                   |
| 0.44836 ms    |          |           |            |            | VOUT_MODE (20)         | No Ack            | _        |          |          |           |                   |
| 0.47585 ms    | Re-start | 22        | Read       | No Ack     |                        |                   | 32       | No Ack   | D1       | No Ack    |                   |
| 0.56991 ms    | start    | ЗF        | Write      | No Ack     | EXTENDED (FE)          | No Ack            |          |          |          |           |                   |
| 0.61397 ms    |          |           |            |            | IIN_OC_WARN_LIMIT (5D) | No Ack            | 6E       | No Ack   |          |           |                   |
| U.58548 ms    | start    | 46        | Write      | NO ACK     | VUUT_CUMMAND (21)      | NO ACK            | 3A<br>D4 | NO ACK   | 8B<br>85 | NO ACK    | 92                |
| 0.82306 ms    |          | 10        | TT         | 37 - 3 -la |                        | The Arele         | 84       | NO ACK   | 65       | NO ACK    |                   |
| 0.89358 113   | start    | 12        | write      | NO ACK     | EXTENDED (FE)          | NO ACK            |          |          |          |           |                   |
| 0.93827 113   | Do shout | 22        | Deed       | Ma A als   | VUUI_MUDE (20)         | NO ACK            | 22       | No. A sh | D1       | No. A als |                   |
| 1.05002 mg    | Re-Start | 22        | Reau       | No Ack     |                        | No. A als         | 34       | NO ACK   | DI       | NO ACK    | ( <u> </u>        |
| 1.03903 113   | Start    | or        | write      | NO ACK     | TIN OC MADE IINTT (ED) | NO ACK            | 6F       | No. Ack  |          |           |                   |
| 1.10505 MS    | etort    | 46        | Write      | No. Ack    | YOUT COMMAND (21)      | No Ack            | 30       | No Ack   | 8B       | No. Ack   | 92 -1             |
| <b>1</b>      | JUALU    | -10       | WIICE      | NO ACK     | YOUT_CONTAIND (21)     | NO ACK            | JA       | NO ACK   | 00       | NO ACK    |                   |
|               |          |           |            |            |                        |                   |          |          |          |           | sin ri <b>m</b> t |
|               |          |           |            |            | 📢 🖸 🛛 12               | 98 <mark>B</mark> |          | U D      |          | 0         | 2 111  <b>III</b> |



## **ProfiBus**

ProfiBus (PROcess Field Bus) 于 1987 由德国西门子等十四家公司及五个研究机 构所推动,广泛用于工业控制自动化、交通电力自动化等。ProfiBus 由 3 个部份 组成,最早提出的 PROFIBUS FMS (Fieldbus Message Specification), PROFIBUS DP (Decentralized Peripherals), PROFIBUS PA (Process Automation)。目前最常使 用的是 PROFIBUS DP 和 PROFIBUS PA。

参数设定

| ProfiBus 参数设置                                       |             | ×        |
|-----------------------------------------------------|-------------|----------|
| 参数设置                                                | 波形颜色        |          |
| 通道设置<br>ProfiBus Channel CH 0 极性 Idle high 🔽        | LE / LEr SD | <b>_</b> |
|                                                     | SA 🗖 🔽 DA   | <b>▼</b> |
|                                                     | DSAP        |          |
| 波特率 9600 bps                                        | DU SSAP     | <b>_</b> |
| └── Start Bit之后是MSB<br>└── 波形中显示刻度                  | ED FCS      | <b>•</b> |
| 分析范围                                                |             |          |
| 选择要分析的范围                                            |             |          |
| 起始位置     结束位置       緩冲区开头     ▼         緩冲区结尾     ▼ |             |          |
|                                                     | 缺省 确定       | 取消       |

通道设定: 设定 ProfiBus Channel 通道

极性: 设定 Idle high / Idle low

**鲍率/自动侦测:**手动设定鲍率或勾选自动侦测

Start Bit 之后是 MSB: 设定封包 Start Bit 之后是 MSB,预设是 LSB。

波形中显示刻度: 设定在波形区依鲍率显示刻度



| Time/Div: 4 us                |                    |                                                                                                    |                       |
|-------------------------------|--------------------|----------------------------------------------------------------------------------------------------|-----------------------|
| Acquired: 11:11:5             | 1.693              | 17.08 us 203.48 us 209.88 us 216.28 us 222.68 us 229.08 us 235.48 us 241.88 us 248.28 us 254.68 us | 261.08 us 267.48 us   |
| Bus 1 DB                      | Idle               | 5D2 68 LE 04 LEF 04 SD2 68 DA 02 SA 01 FC 5D DSAP 00 FCS 0                                         | 50 ED 16              |
| PrefiBur                      |                    | 4.66 us 6.68 us                                                                                    |                       |
| Label Ch                      | nannel 💶           |                                                                                                    | •                     |
| CH-00 CH-00 CH-00 CH-00 CH-00 | RR 🛄 🗵             | 🗶 Bus 1(ProfiBus) 🔹                                                                                |                       |
| Timestamp                     | Frame              | Information                                                                                        | ▲ .                   |
| 0.1944 ms                     | SD2 (68)           | Start Delimiter                                                                                    |                       |
| 0.20173 ms                    | LE (04)            | Datalen 04                                                                                         |                       |
| 0.20906 ms                    | LEr (04)           |                                                                                                    |                       |
| 0.2164 ms                     | SD2 (68)           |                                                                                                    |                       |
| 0.22373 ms                    | DA (02)            |                                                                                                    |                       |
| 0.23105 ms                    | SA (UI)<br>EC (ED) | Addt UI -> U2 (Response)                                                                           |                       |
| 0.2304 113                    | FC (5D)            | Response for baca high Resource for send baca                                                      |                       |
| 0.25307 mg                    | FCS (60)           | elice_kead_bata                                                                                    |                       |
| 0.26041 ms                    | ED (16)            | End Delimiter                                                                                      |                       |
|                               |                    |                                                                                                    |                       |
|                               |                    |                                                                                                    |                       |
|                               |                    | 🍋 🔓 263.157894737 KHz ਟ 1.859427296 KHz 🖁                                                          | 9.286775632 КН2 🕒 🔟 🔟 |



### **PS/2**

是一种双向同步串行通讯协议,应用在键盘或鼠标跟PC之间的通讯。IBM开发,由六支接脚所组成,分别为 Clock(频率)、Data(数据)、+5v(电源)、Ground(接地) 以及两支空脚。PS/2 采用双向同步传输方式,通讯的两端透过 Clock(频率输出) 及 Data(数据传送)交换数据。

#### 参数设置

| PS/2 参数设 | 置                        |
|----------|--------------------------|
| 参数设置     |                          |
| 1        | 一般 分析报表                  |
|          | Clock CH 0 → Data CH 1 → |
|          | □ 扫描码转成键盘码               |
|          | □ 将报告资料以 MATLAB 的格式输出    |
|          | ☑ 忽略毛刺                   |
|          |                          |
| 波形颜色     |                          |
|          | 设置栏位的颜色                  |
|          | 主机送出                     |
|          | 设备传送                     |
| 范围选择     |                          |
|          | 选择要分析的范围                 |
|          | 起始位置 结束位置                |
|          | 缓冲区开头 ▼ 缓冲区结尾 ▼          |
|          |                          |
|          | 预设 确定 取消                 |

一般:

通道选择:设置待测物上各个信号端接在逻辑分析仪的通道编号。分别是 Clock 以及 Data。

扫描码转成键盘码:将分析后的数据显示成对应之键盘码。

将报告数据以 MATLAB 格式输出:将分析后的数据输出为 MATLAB 的档案



格式,格式如下所示。

Time = [25.78484 25.785985 ... ]

Description = [DH DH ... ] DH = Device to Host, HD = Host to Device

Data = [ 58 FA 02 FA C4 ... ]

数据(PS2\_Matlab.m)存储于工作目录下。

忽略毛刺:分析时忽略因跳变存储过缓造成的毛刺。

分析报表

| 一般 | 分析报表                    |
|----|-------------------------|
| Sh | ow the status in report |
|    | Description             |
|    | Data                    |
|    | Error                   |
|    | ASCII                   |
|    | Idle                    |
|    |                         |

报告过滤的功能,报告区会显示被勾选的项目。

| Time/Div: 400 us               | <b>0</b>       |                 |                   |                    |                         | B            |
|--------------------------------|----------------|-----------------|-------------------|--------------------|-------------------------|--------------|
| Acquired: 08:00:0              | 0.0 36.449     | ms 37.089 ms 37 | .729 ms 38.369 ms | 39.009 ms 39.6     | 49 ms 40.289 ms         | 40.929 ms    |
|                                | Idle           | DtoH:18         | DtoH:FF           | DtoH:00            | DtoH:00                 | Idle         |
| PS2 0 Clo                      | ck             |                 |                   |                    |                         |              |
| 1 Dat                          | ta             | 324u 242u 284u  | 972u              | 729u 283u          | 729u                    | 13.702m      |
| Label Char                     | nnel 💶 📘       |                 |                   |                    |                         | ▶            |
| ⊙/Ⅲ CH-00 CH-00<br>CH-01 CH-00 |                | (PS/2)          |                   |                    |                         |              |
| Timestamp                      | Description    | Data            | Error             |                    |                         | ASCI 🔺       |
| 1.933 ms                       | Idle           |                 |                   |                    |                         |              |
| 36.607 ms                      | Device to Host | 18              |                   |                    |                         |              |
| 37.514 ms                      | Idle           |                 |                   |                    |                         |              |
| 37.619 ms                      | Device to Host | FF              |                   |                    |                         |              |
| 38.538 ms                      | Idle           |                 |                   |                    |                         |              |
| 38.672 ms                      | Device to Host | 00              |                   |                    |                         |              |
| 39.562 ms                      | Idle           |                 |                   |                    |                         |              |
| 39.684 ms                      | Device to Host | 00              |                   |                    |                         |              |
| 40.585 ms                      | Idle           |                 |                   |                    |                         |              |
| 54.115 ms                      | Device to Host | 18              |                   |                    |                         |              |
| 55.048 ms                      | Idle           |                 |                   |                    |                         |              |
| 55.168 ms                      | Device to Host | FF              |                   |                    |                         |              |
| 56.072 ms                      | Idle           |                 |                   |                    |                         |              |
| 56.181 ms                      | Device to Host | 00              |                   |                    |                         |              |
| 57.096 ms                      | Idle           |                 |                   |                    |                         | <b>_</b>     |
| •                              |                |                 |                   |                    |                         |              |
|                                |                |                 |                   | 255 <mark>B</mark> | 305726 <mark>A</mark> 3 | 805981 🕒 🕅 🚻 |

#### 分析结果



## PWM

PWM(Pulse Width Modulation),称为脉宽调变,它不是一种总线分析协议。主要 是利用脉冲宽度之周期对模拟电路进行控制的一种非常有效的技术,广泛应用在 一些转速控制、亮度控制和温度控制等。

参数设置

| PWM 参数设置          |                 |                |          | >          | < |
|-------------------|-----------------|----------------|----------|------------|---|
| 參數設定              |                 | 波形颜色           | <u>Ľ</u> |            |   |
|                   |                 |                | 工作周期     |            |   |
|                   |                 |                | 90%~100% | <b></b>    |   |
| <br>□ 画出PWM波形     |                 | l              | 80%~89%  | <b>-</b>   |   |
| — 显示Source ———    |                 |                | 70%~79%  | <b></b>    |   |
| 6 🗛 c 🗚           |                 |                | 60%~69%  | <b></b>    |   |
|                   |                 |                | 50%~59%  | <b></b>    |   |
|                   |                 |                | 40%~49%  | <b></b>    |   |
| ⓒ 时间(X) - 周期(Y) ( | Ĉ 时间(X) - 频率(Y) |                | 30%~39%  | <b></b>    |   |
| 2 _               | 8               |                | 20%~29%  | <b></b>    |   |
|                   |                 |                | 10%~19%  |            |   |
| Time (X)          | Time (X)        |                | 0%~9%    | <b></b>    |   |
| □ 画0%和100%周期      | ℃ 时间(X) - 转速(Y) | 分析范围           | 5        |            |   |
|                   | 8               | <b>. 200</b> ) | 选择要分析的范  | 「「「」「」「」   |   |
|                   | M               | r 1            | 起始位置     | 缓冲区开头 💽    | 1 |
|                   | Time (X)        |                | 结束位置     | 缓冲区结尾    ▼ | 1 |
| 颜色 📃 🔽            |                 |                |          |            |   |
|                   |                 |                |          |            | _ |
|                   |                 |                | 缺省       | 确定 取消      | ] |

PWM Channel: PWM 该信号通道

画出 PWM 波形:

显示 Source:显示 PWM 来源波形



时间(X)-周期(Y):显示以时间为 X 轴;周期为 Y 轴的折线图

时间(X)-频率(Y):显示以时间为 X 轴;频率为 Y 轴的折线图

時間(X)-轉速(Y):显示以时间为 X 轴;轉速为 Y 轴的折线图

**画 0% 和 100% 周期:**当选择时间(X)-周期(Y)绘图时,勾选画 0% 和 100% 周期时,则会画出该段曲线;反之,则不会画出该段曲线。若出现 0%紧接 100% 或是 100%紧接 0%的情形,2个周期相连的曲线将不画。

**频率从0Hz开始:**当选择时间(X)-频率(Y)绘图时,勾选该项Y轴频率刻度会从 0Hz开始,反之会从最小频率开始。

#### 分析结果

设置 显示 Source





#### 设置 时间(X)-周期(Y)



### 设置 时间(X)-频率(Y)

| Time/Div: 2.048 m:                                                            | s 🤨          |                                    |                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------|--------------|------------------------------------|----------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acquired: 08:40:58                                                            | 8.0 89.578 n | ns 92.855 ms 96.132                | ms 99.409 ms 102.6               | 85 ms 105.962 ms 109              | 9.239 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PWM 0 PV                                                                      |              |                                    |                                  | 2.75m                             | 2.87 im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PWM_Freq 0 PW                                                                 | VM           | 9.87ms 92.3ms 93.67ms 95.11ms 96.1 | 1ms 98.12ms 99.5ms 100.3ms 102.3 | ns 103.8ms 105.3ms 106.8ms 108.3n | 17.151 KH2<br>15.4359 KH4<br>13.7208 KH4<br>12.0057 KH4<br>0.2906 KH4<br>8.5755 KH4<br>6.8604 KH4<br>5.1453 KH4<br>1.7151 KH4<br>0 KH4<br>0 KH4<br>1.7151 KH4<br>0 KH4 |
| CH-00         CH-00         CH-00           CH-01         CH-00         CH-00 |              | 4) 🔽                               |                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Timestamp                                                                     | Frequency    | Duty Cycle                         | Period                           | RPM                               | ▲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.000035385 \$                                                                | 15.908 KHz   | 34%                                | 0.063 ms                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.000098245 \$                                                                | 15.894 KHz   | 33%                                | 0.063 ms                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.00016116 \$                                                                 | 15.894 KHz   | 31%                                | 0.063 ms                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.000224075 \$                                                                | 15.901 KHz   | 30%                                | 0.063 ms                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.000286965 \$                                                                | 15.918 KHz   | 29%                                | 0.063 ms                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.000349785 \$                                                                | 15.907 KHz   | 28%                                | 0.063 ms                         |                                   | <b>_</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ·                                                                             | I            |                                    |                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                               |              |                                    | A 35292 B                        | 66960 <mark>A</mark> B            | 102252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



### 设置 时间(X)-转速(Y)





QI

QI 为无线电力传输协会 Wireless Power Consortium (WPC)所制定,作为无线电力传输时用以沟通发送端及接收端装置的通讯协议。

参数设置

| 2          | QI 通     | й сн | 0 . | <b>I</b> | 高级显示 |    |
|------------|----------|------|-----|----------|------|----|
| 皮形颜        | 色        |      |     |          |      |    |
|            | Preamble |      | •   | Start    |      | ]• |
|            | Head     |      |     | Parity   |      | -  |
|            | Message  |      | •   | Stop     |      |    |
|            | CheckSum |      | -   |          |      |    |
| 分析茆        | (明)      |      |     |          |      |    |
|            | 选择要分标    | 听的范围 |     |          |      |    |
| <b>*</b> * | 起始位      | 置    |     | 结束位置     |      |    |
|            | 缓冲区      | 开头   | -   | 缓冲区结     | € ▼  |    |

QI 通道: QI 讯号(Bi-phase Encoded)

进阶译码:对 Message 内容译码

| Time                                                                       | Header(h)                                                | Message (h)                                                                                                                   | CheckSum(h)       | Error |
|----------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------|-------|
| 0.036679 S                                                                 | Signal Strength (01)                                     | 6B                                                                                                                            | 6A                |       |
| 0.066613 S                                                                 | Identification (71)                                      | 10 00 10 00 6A EO 4A                                                                                                          | B1                |       |
| 0.130477 S                                                                 | Configuration (51)                                       | 0A 00 00 00 00                                                                                                                | 5B                |       |
| 0.221095 S                                                                 | Control Error (03)                                       | 1E                                                                                                                            | 1D                |       |
| 0.281483 S                                                                 | Control Error (03)                                       | 1E                                                                                                                            | 1D                |       |
| 0.341872 S                                                                 | Control Error (03)                                       | 1E                                                                                                                            | 1D                |       |
|                                                                            |                                                          |                                                                                                                               |                   |       |
| Time                                                                       | Header(h)                                                | Message (h)                                                                                                                   | CheckSum(h)       | Error |
| Time<br>0.036679 S                                                         | Header(h)<br>Signal Strength (01)                        | Message (h)<br>6B                                                                                                             | CheckSum(h)<br>6A | Error |
| Time<br>0.036679 S<br>0.066613 S                                           | Header(h)<br>Signal Strength (01)<br>Identification (71) | Message(h)<br>6B<br>Minor Version (0)                                                                                         | CheckSum(h)<br>6A | Error |
| Time<br>0.036679 S<br>0.066613 S<br>0.066613 S                             | Header(h)<br>Signal Strength (01)<br>Identification (71) | Message(h)<br>6B<br>Minor Version (0)<br>Major Version (1)                                                                    | CheckSum(h)<br>6A | Error |
| Time<br>0.036679 S<br>0.066613 S<br>0.066613 S<br>0.066613 S               | Header(h)<br>Signal Strength (01)<br>Identification (71) | Message(h)<br>6B<br>Minor Version (0)<br>Major Version (1)<br>Manufacturer Code (00 10)                                       | CheckSum(h)<br>6A | Error |
| Time<br>0.036679 S<br>0.066613 S<br>0.066613 S<br>0.066613 S<br>0.066613 S | Header(h)<br>Signal Strength (01)<br>Identification (71) | Message(h)<br>6B<br>Minor Version (0)<br>Major Version (1)<br>Manufacturer Code (00 10)<br>Basic Device Identifier (00 6A E0) | CheckSum(h)<br>6A | Error |



| Time/Div: 1.6 ms  | 1                     |                                                   | 3                |
|-------------------|-----------------------|---------------------------------------------------|------------------|
| Acquired: 17:33:4 | B 31.516 ms 34.076 ms | 36.636 ms 39.196 ms 41.756 ms 44.316 ms 46.876 ms | 49.436 ms        |
| COMM1 QI          | Idle Preamble         | Header 01 Message 6B                              | Check Sum 6A     |
| Label CH-00 CH-00 |                       |                                                   |                  |
| Timestamp         | Header(h)             | Message(h)                                        | CheckSum(h) E: - |
| 0.036679 %        | Signal Strength (01)  | 6B                                                | 6A               |
| 0.066613 %        | Identification (71)   | Minor Version (0)                                 |                  |
| 0.066613 %        |                       | Major Version (1)                                 |                  |
| 0.066613 \$       |                       | Manufacturer Code (00 10)                         |                  |
| 0.066613 \$       |                       | Basic Device Identifier (00 6A EO 4A)             |                  |
| 0.066613 %        |                       | Ext (0)                                           | B1               |
| 0.130477 S        | Configuration (51)    | Maximun Power (OA)                                |                  |
| 0.130477 S        |                       | Power Class (0)                                   |                  |
| 0.130477 S        |                       | Count (0)                                         |                  |
| 0.130477 S        |                       | Prop (0)                                          |                  |
| 0.130477 S        |                       | Window Offset (0)                                 |                  |
| 0.130477 S        |                       | Window Size (00)                                  | 5B               |
| 0.221095 \$       | Control Error (03)    | 1E                                                | 1D               |
| 0.281483 5        | Control Error (03)    | 1E                                                | 1D               |
| 0.341872 \$       | Control Error (03)    | 1E                                                | 1D 🚽             |
| •                 |                       |                                                   |                  |
|                   |                       | <b>642614 B</b> 58220 <b>B</b>                    | 584394 🕒 川 🎹     |



## **RC-5**

RC-5 是为飞利浦(Philips)所制定的一种红外线遥控信号协议,为广泛提供廉价的 遥控控制。该协议明确界定为不同类型的设备(如家庭的娱乐系统),以确保它的 兼容性。目前最新的协议称为 RC-6,具有更多的功能。但大多仍采用 RC-5 的 格式。

参数设置

| RC-5 参数设置                                                                                   |                                                               | ?        | $\times$ |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------|----------|
| 参数设置<br>RC-5 Channel<br>CH 0<br>□ 激活 Extended 模式<br>IF 激活 Extended 模式<br>IF Report 不显示 Idle | 編码方式<br>✓ 自动侦测<br>← Mancherster<br>← Mancherster with carrier |          |          |
| 波形颜色<br>S1<br>S2<br>Toggle 0<br>Toggle 1<br>Address<br>Command                              | 分析范围 选择要分析的范围 起始位置 结束位置 缓冲区开头 ▼ 緩冲区结尾 缺省 确定 取消                | <b>-</b> |          |

参数设置:设置待测物上的信号端接在逻辑分析仪的通道编号。

**执行 Extended 模式:** 当 Extended 执行时,会将 S2 转换成 Command 的第七个位。在波形区会多一个 Extend Command 的数据。

**Report 不显示 Idle:** 勾选此项, Report 区会将不会有 Idle 的数据, 方便使用者观察分析结果。

编码方式: 分自动侦测、Mancherster、Mancherster with carrier 三种格式。

自动侦测:自动侦测所使用之编码方式。

Mancherster: 编码方式为无载波之 Mancherster。

Mancherster with carrier: 编码方式为有载波之 Mancherster。



分析无载波之 RC5



### 分析有载波之 RC5





## **RC-6**

RC-6 是飞利浦(Philips)制定的一种红外线通讯协议,承袭自 RC-5 的架构并且增加了更多功能,可使用不同的操作模式在不同的用途,不同的模式下也会有不同长度的命令。

#### 参数设置

| RC-6 参数i | 设置                                                                    | ? >                                          |
|----------|-----------------------------------------------------------------------|----------------------------------------------|
| 参数设置     | RC-6 Channel<br>CH 0<br>Addr&Cmd Bits<br>16 Bits<br>F Report 不显示 Idle | 「 <mark>编码方式</mark><br>「 自动侦测                |
| 波形颜色     | Leader  Start Bit Mode Bits Toggle Bit Control Information            | 分析范围<br>送择要分析的范围<br>起始位置     结束位置<br>触发游标(T) |

参数设置:设置待测物上的信号端接在逻辑分析仪的通道编号。

Add & Cmd Bits: 可选择 Control 信号内的 Address 和 Information 信号内的

Command 是 8 或 16 个 Bits。

**Report 不显示 Idle:** 勾选此项, Report 区会将不会有 Idle 的数据, 方便使用者观察分析结果。

编码方式: 分自动侦测、Mancherster、Mancherster with carrier 三种格式。

自动侦测:自动侦测所使用之编码方式。

Mancherster: 编码方式为无载波之 Mancherster。

Mancherster with carrier: 编码方式为有载波之 Mancherster。



分析无载波之 RC6



### 分析有载波之 RC6





## **RGB Interface**

RGB Interface 用于 MCU 和 LCD 之间传输数据的接口。LCD Panel 由 LCD 的控制器来驱动,而 RGB 数据则由 MCU 写入内存中再传到 LCD 控制器中。可以由此接口读取 RGB 数据来看 LCD 上呈现的画面。

#### 参数设置

| RGB_IF 参数设置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Х |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|
| □参教设置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |  |  |  |  |  |
| SCLK         CH 0         ·         R0         CH 4         ·         G0         CH 12         ·         B0         CH 20         ·           DE         CH 1         ·         R1         CH 5         ·         G1         CH 13         ·         B1         CH 21         ·           Hsync         CH 2         ·         R2         CH 6         ·         G2         CH 14         ·         B2         CH 22         ·           VSYNC         CH 3         ·         R3         CH 7         ·         G3         CH 15         ·         B3         CH 23         ·           R4         CH 8         ·         G4         CH 16         ·         B4         CH 24         ·           R5         CH 9         ·         G5         CH 17         ·         B5         CH 25         ·           R6         CH 10         ·         G6         CH 18         ·         B6         CH 26         ·           R7         CH 11         ·         G7         CH 19         ·         B7         CH 27         · |   |  |  |  |  |  |  |
| R7 CH 11 ÷ G7 CH 19 ÷ B7 CH 27 ÷<br>Format<br>RGB888 ▼ Save as JPG file<br>A (Alpha) R (Red) G (Green) B (Blue) L (Luminance)<br>0 bits ▼ 8 bits ▼ 8 bits ▼ 0 bits ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |  |  |  |  |
| 波形颜色<br>HSYNC VSYNC DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |  |  |  |  |
| 分析范围<br>→ 选择要分析的范围<br>起始位置    缓冲区开头                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |  |  |  |  |  |  |

SCLK: 时钟信号

DE(Data Enable): 开始读取数据讯号



Hsync(Horizontal synchronization): 横向数据讯号

Vsync(Vertical synchronization): 纵向数据讯号

**R0-7, G0-7, B0-7:** RGB 数据脚位

Format: 选择 RGB 格式或 User defined

Save as JPG file: 勾选此功能,译码完成后会将 RGB 数据于 LA Viewer 工作目录下产生 JPG 文件

#### 分析结果

| Time/Div: | 30 ns                           | E            |          |               |            |             |             |               |          |      |
|-----------|---------------------------------|--------------|----------|---------------|------------|-------------|-------------|---------------|----------|------|
| Acquired: | 17:49:32.697                    | i i          | 30.      | .855 us 30.90 | 5 us 30.95 | 5 us 31.005 | us 31.055 u | s 31.105      | us 31.15 | 5 us |
| Bus 1     | 24, R: 10<br>Pote U<br>Chi Valu | D. G XXXXXXX |          |               | 00. B: 22. |             |             | i: 00. 8: 22. |          |      |
| Timestam  | Fiel                            | ld           | D0 (RGB) | ) D1 (RGB)    | D2 (RGB)   | D3 (RGB)    | D4 (RGB)    | D5 (RGB)      | D6 (RGB) | D7 ▲ |
| 0 02949   | ma Inl                          | D[16+23]     | 00 00 2  | 2 00 00 22    | 00 00 22   | 00 00 22    | 00 00 22    |               | 00 00 22 | 00   |
| 0.02949   | me In1                          | D[24:31]     | 00 00 22 | 2 00 00 22    | 00 00 22   | 00 00 22    | 00 00 22    | 00 00 22      | 20 20 20 | 10   |
| 0.032155  | ms Ln1                          | D[32:39]     | 10 10 10 | 0 10 10 10    | 10 10 10   | 10 10 10    | 10 10 10    | 10 10 10      | 10 10 10 | 10   |
| 0.03349   | ma Ln1.                         | D[40:47]     | 10 10 10 | 0 10 10 10    | 10 10 10   | 10 10 10    | 10 10 10    | 10 10 10      | 10 10 10 | 10   |
| 0.034825  | ms Ln1,                         | D[48:55]     | 10 10 10 | 0 10 10 10    | 10 10 10   | 10 10 10    | 10 10 10    | 10 10 10      | 10 10 10 | 20   |
| 0.036155  | ma Ln1                          | D[56:63]     | 00 00 10 | 0 10 10 10    | 10 10 10   | 10 10 10    | 10 10 10    | 10 10 10      | 10 10 10 | 10   |
| 0.03749   | ma Ln1                          | D[64:71]     | 10 10 10 | 0 10 10 10    | 10 10 10   | 10 10 10    | 10 10 10    | 10 10 10      | 10 10 10 | 10   |
| 0.038825  | me Ln1                          | D[72.79]     | 10 10 10 | 0 10 10 10    | 10 10 10   | 10 10 10    | 10 10 10    | 10 10 10      | 10 10 10 | 10   |
| 0.040155  | me In1                          | D[80.87]     | 20 20 20 | 0 10 10 10    | 10 10 10   | 10 10 10    | 10 10 10    | 10 10 10      | 10 10 10 | 10   |
| 0.04149   | ms Ln1                          | D[88:95]     | 10 10 10 | 0 10 10 10    | 10 10 10   | 10 10 10    | 10 10 10    | 10 10 10      | 10 10 10 | 10   |
| 0.042825  | ms Ln1                          | D[96:103]    | 10 10 10 | 0 10 10 10    | 10 10 10   | 10 10 10    | 10 10 10    | 10 10 10      | 10 10 10 | 10   |
| 0.044155  | ms J.n1.                        | , D[104:111] | 10 10 10 | 0 20 20 20    | 10 10 10   | 10 10 10    | 10 10 10    | 10 10 10      | 10 10 10 | 10   |
| •         |                                 | =]           |          |               |            |             |             |               |          | •    |



## S/PDIF

是一种数字音效传输接口,可使用电线或光纤进行传输。其名称是 Sony/Philips Digital Interconnect Format(也被称为 Sony Philips Digital InterFace)。这两家公司 是主要的规格制定者,其规格源自 AES/EBU 专业用数字音效传输接口,然后做 一些修改后可用于较低成本的硬件上。

#### 参数设置

| S/PDIF 参数设置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 参数设置<br>通道设定 CH 0 ↓<br>● 自动侦测 Bit Rate<br>○ ① ● Mb/s<br>(384Kb/s~12.288Mb/s)<br>● 面出声音波形<br>放形颜色                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aux Data     Image: Construction of the second |
| 分析范围<br>选择要分析的范围<br>起始位置     结束位置<br>缓冲区开头     缓冲区结尾                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

通道设置:缺省为 Channel 0。

自动侦测 Bit Rate: 缺省为开启。此处可自动侦测信号源所送出的信号频率,可测量的范围是 Bit Rate 384Kb/s-12.288Mb/s(Audio sample rate 6Khz-192Khz)。您



可以选择由逻辑分析仪自动侦测或选择内建的项目来进行信号抓取。自动侦测所 得出的频率可能会接近真实的频率,但对于信号分析并没有影响。若是您最后希 望进行录音播放时,逻辑分析仪会根据侦测到的频率来换算播放的 sample rate, 可能会与信号源不同。

**Frame 数量:** 缺省每个 Block 内,有 192 个 Frame。此数值主要是用来协助分析 出每个 Sub frame 的顺序,并协助解出 User bit 及 Channel status bit。

位顺序(Aux. Data): 缺省 Aux. data 为 LSB first。可修改为 MSB first。

位顺序(Audio Data): 缺省 Audio data 为 LSB first。可修改为 MSB first。

**数据格式:**缺省为 16 bits。可选择为 16、20、24 bits。逻辑分析仪会根据此数值 来显示数据及产生可播放的声音数据。

同位检查:缺省为 Event parity,您可修改为 Odd parity 或 Non Parity。在报告窗口会协助判断数据是否有发生错误。

录音重放:缺省为开启,此功能可以把所有 Sub frame 收集起来后,于分析完毕 后进行播放。您可以用最快的方式确认声音是否已经正常传送,而不必逐项检视 数据。由于播放的时间长度,会根据逻辑分析仪能纪录的数据深度有关,建议您 可将逻辑分析仪的数据深度拉大,并减少逻辑分析仪使用的通道数量。

**画出声音波形:**可于波形区划出声音的波形。



### 将波形栏位解析出来

| Time/Div: 1 us                                                                  | <b>0</b>   |                |               |                |               |              |                     |               |
|---------------------------------------------------------------------------------|------------|----------------|---------------|----------------|---------------|--------------|---------------------|---------------|
| Acquired: 08:00:00                                                              | )          | 3.467 ms 993.  | 469 ms 993.47 | 1 ms 993.472 n | ns 993.474 ms | 993.475 ms 9 | 93.477 ms 993.479 m | s<br>         |
| S/PDIF 0 S/PDIF                                                                 | Data:0FFC6 |                | Preamble:W A  | ux:0           | D             | ata:0000D    |                     |               |
| SIPDIF                                                                          |            |                | 40n           |                |               |              |                     |               |
|                                                                                 |            |                |               |                |               |              |                     | -             |
| Label Channe                                                                    |            |                |               |                |               |              |                     | •             |
| CH-00         CH-00           CH-01         CH-00           CH-01         CH-00 |            | S/PDIF(S/PDIF) | •             |                |               |              |                     |               |
| Timestamp                                                                       | Frame      | Preamble       | Aux Data      | Audio Data     | Validity bit  | User bit     | Channel Status      | Pa 🔺          |
| 0.99345732 \$                                                                   | 95         | М              | 0             | OFFC6          | 0             | 0            | 0                   | 0             |
| 0.99346866 \$                                                                   |            | U<br>V         | 0             | 0000D          | 0             | 0            | 0                   | 1             |
| 0.99348 5                                                                       | 96         | M              | 0             | 00025          | 0             | 0            | 0                   | 0             |
| 0.99350268 %                                                                    | 97         | M              | 0             | 00000          | 0             | 0            | 0                   | 1             |
| 0.99351402 \$                                                                   | 27         | M N            | 0             | 0005A          | 0             | 0            | 0                   | 0             |
| 0.99352536 \$                                                                   | 98         | M              | 0             | 00000          | 0             | 0            | 0                   | 0             |
| 0.99353668 \$                                                                   |            | U              | 0             | 00080          | 0             | 0            | 0                   | 1             |
| 0.99354802 S                                                                    | 99         | M              | 0             | 00006          | 0             | 0            | 0                   | 0             |
| 0.99355936 \$                                                                   |            | U              | 0             | 0009C          | 0             | 0            | 0                   | 0             |
| 0.9935707 \$                                                                    | 100        | M              | 0             | 00001          | 0             | 0            | 0                   | 1             |
| 0.99358204 S                                                                    |            | U              | 0             | 000B6          | 0             | 0            | 0                   | 1             |
| 0.99359338 \$                                                                   | 101        | M              | 0             | OFFF7          | 0             | 0            | 0                   | 1 🗸           |
| •                                                                               |            |                |               |                |               |              |                     |               |
|                                                                                 |            |                |               | 🤹 🧟            | -3.02 us 📕    | -2.62 us     | A 400 ns (          | m U  <b>E</b> |

### 将波形以声音波形绘制出来

| Time/Div       | 7: 131.072               | 2 ms 📮    |                                                                                                          |                                        |                                        |                |                                        |                                                                     |          |
|----------------|--------------------------|-----------|----------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------|----------------------------------------|---------------------------------------------------------------------|----------|
| Acquired       | l: 08:00:0               | 0.0 🔶     | 209.715 r                                                                                                | ns 419.43 ms                           | 629.146 ms 8                           | 38.861 ms      | 1.049 S 1.258                          | S 1.468 S                                                           |          |
| PBus1          | O :<br>S/PDIF            | S/PDIF    | (; 6572<br>; -4496<br>(; 5706<br>; -5766<br>; -5766<br>; -5766<br>; -5766<br>; -11111<br>; 00;00:00;19.6 | 11111111111111111111111111111111111111 | 11111111111111111111111111111111111111 | 78.64 00;00;00 | 11111111111111111111111111111111111111 | 30000<br>0<br>30000<br>-30000<br>-30000<br>-11111<br>11111<br>11111 |          |
| Label          | C                        | ihannel 🔄 |                                                                                                          |                                        |                                        |                | · · ·                                  |                                                                     | •        |
| ⊘/111 CI<br>CI | H-00 CH-00<br>H-01 CH-00 |           | PBus1(S/PD                                                                                               | DIF) 💌                                 |                                        |                |                                        |                                                                     |          |
| Ti             | Frame                    | Preamble  | Aux Data                                                                                                 | Audio Data                             | Validity bit                           | User bit       | Channel Status                         | Parity Bit                                                          | Error 🔺  |
| 0.0            |                          | W         | 0                                                                                                        | OFDD6                                  | 0                                      | 0              | 0                                      | 0                                                                   |          |
| 0.0            | 76                       | М         | 0                                                                                                        | 001BA                                  | 0                                      | 0              | 0                                      | 0                                                                   |          |
| 0.0            |                          | W         | 0                                                                                                        | OFDB7                                  | 0                                      | 0              | 0                                      | 1                                                                   |          |
| 0.0            | 77                       | М         | 0                                                                                                        | 00202                                  | 0                                      | 0              | 0                                      | 0                                                                   |          |
| 0.0            |                          | W         | 0                                                                                                        | 0FD93                                  | 0                                      | 0              | 0                                      | 1                                                                   |          |
| 0.0            | 78                       | М         | 0                                                                                                        | 00222                                  | 0                                      | 0              | 0                                      | 1                                                                   |          |
| 0.0            |                          | W         | 0                                                                                                        | 0FD77                                  | 0                                      | 0              | 0                                      | 1                                                                   |          |
| 0.0            | 79                       | М         | 0                                                                                                        | 00229                                  | 0                                      | 0              | 0                                      | 0                                                                   |          |
| 0.0            |                          | W         | 0                                                                                                        | OFD4B                                  | 0                                      | 0              | 0                                      | 1                                                                   |          |
| 0.0            | 80                       | М         | 0                                                                                                        | 0020D                                  | 0                                      | 0              | 0                                      | 0                                                                   |          |
| 0.0            |                          | W         | 0                                                                                                        | OFD20                                  | 0                                      | 0              | 0                                      | 0                                                                   |          |
| 0.0            | 81                       | М         | 0                                                                                                        | 001C5                                  | 0                                      | 0              | 0                                      | 1                                                                   |          |
| 0.0            |                          | W         | 0                                                                                                        | OFCFA                                  | 0                                      | 0              | 0                                      | 0                                                                   |          |
| 0.0            | 82                       | М         | 0                                                                                                        | 00161                                  | 0                                      | 0              | 0                                      | 0                                                                   |          |
|                |                          |           |                                                                                                          |                                        |                                        |                |                                        |                                                                     |          |
|                |                          |           |                                                                                                          |                                        | -                                      | 151            | B 13                                   |                                                                     | 20 🕒 🔟 🎹 |



## **SDIO**

SDIO,意即 Secure Digital Input/Output,支持 SD3.0/SDIO3.0 是一种内存卡的标准。

参数设置

| SDIO/SD | 3.0 参数设置                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 参数设置    | _ 通道设罢                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           | 署数据的颜色                                               |
| 范围选择    | CLK       CH 0       •       DATA3       CH 5       •         CMD       CH 1       •       DATA4       CH 6       •         DATA0       CH 2       •       DATA5       CH 7       •         DATA1       CH 3       •       DATA6       CH 8       •         DATA2       CH 4       •       DATA7       CH 9       •         数据长度: Bytes (Min: 1, Max: 2048)       512       512         选择要分析的范围       起始位置       结束位置       结束位置 | <ul> <li>Command only</li> <li>C Data only</li> <li>C Command + Data</li> <li>C Command + Data</li> <li>C Command + Data</li> <li>C Command - Data</li> <li>Don't care dock</li> <li>Adv. Report</li> <li>Don't care dock</li> <li>Adv. Report</li> <li>C a-bit Data</li> <li>C a-bit Data</li> <li>C a-bit Data</li> <li>C 1-bit Data</li> <li>C 1-bit Data</li> <li>C 1-bit Data</li> <li>D DR mode</li> <li>Non-interleaved</li> </ul> | tart bit ost vice vice vice vice vice vice vice vice |
|         | 缓/中区开头】   缓/中区结尾                                                                                                                                                                                                                                                                                                                                                                                                                  | t                                                                                                                                                                                                                                                                                                                                                                                                                                         | 決省 确定 取消                                             |

通道设置:设置待测物上,各个信号端,接在逻辑分析仪的通道编号。

**Command only:** 只显示 Command 结果。

Data only: 只显示 Data 结果。

Command + Data: 显示 Command 结果于波形区,并于报告区同时显示

Command 及 Data 结果。

Adv. Report: 报告区会对 Command argument 数据进一步译码。

Don't care clock: 只依照 CMD 通道来译码,不需要 CLK 通道。

Data: 可选择 DDR mode、8位、4位或1位的数据,选择1位的数据时可选择 是否要分析 SDIO interrupt 并经由 DATA1 来分析 IO interrupt,在 DDR mode下 勾选"Non-interleaved"后分析数据不会交错排列

数据长度: 设置分析目标的数据长度, 由使用者自行设置。



#### 结果

CMD 模式

| Time/Div: 7.5 ns  | ↓<br>5.6 307.5 ns 320 ns | 332.5 ns    | 345 ns 35         | 57.5 ns 37( | Dins 38                  | 2.5 ns | 395 ns      |      |
|-------------------|--------------------------|-------------|-------------------|-------------|--------------------------|--------|-------------|------|
| noquired, intoora |                          | 1.1.1.1.1   |                   |             |                          | 1.1.1  |             |      |
|                   | R1:CMD19 SET_TUNING_PA   | TTERN       | Da                | ıta:00h     |                          | Da     | ta:00h      | -    |
| SDIO1 0 Clock     |                          |             |                   |             |                          |        |             |      |
|                   |                          |             |                   |             |                          |        | ┘╸└╴└┑      |      |
| 1 Comma           | and 0 1 0                | 1           |                   |             |                          |        |             |      |
| 2010              |                          |             |                   |             |                          |        |             | _    |
| Label Channel     |                          |             |                   |             |                          |        | •           |      |
|                   |                          |             |                   |             |                          |        |             |      |
| CH-00 CH-00 CH-00 | SDIO1(SDIO)              | -           |                   |             |                          |        |             |      |
| Timestamp         | Command                  | Response    |                   | Argument    | (h) CR                   | C7 (h) | Frequency   |      |
| 0.0002925 ms      |                          | R1 : CMD19: | SET_TUNING_PATTER | N 00 00 09  | 00 5F                    |        | 183MHz      |      |
| 0.11772625 ms     | CMD17:READ_SINGLE_BLOCK  |             |                   | 00 00 00    | 00 2A                    |        | 183MHz      |      |
| 0.11806 ms        |                          | R1 :CMD17:  | READ_SINGLE_BLOCK | 00 00 09    | 00 33                    |        | 184MHz      |      |
| 0.3390275 ms      | CMD17:READ_SINGLE_BLOCK  |             |                   | 00 00 00    | 00 2A                    |        | 184MHz      |      |
| 0.33936 ms        |                          | R1 :CMD17:  | READ_SINGLE_BLOCK | 00 00 09    | 00 33                    |        | 184MHz      |      |
| 0.58585375 ms     | CMD17:READ_SINGLE_BLOCK  |             |                   | 00 00 00    | 00 2A                    |        | 183MHz      |      |
| 0.58618625 ms     |                          | R1 :CMD17:  | READ_SINGLE_BLOCK | 00 00 09    | 00 33                    |        | 183MHz      |      |
| 0.83524375 ms     | CMD19:SET_TUNING_PATTERN |             |                   | 00 00 00    | 00 46                    |        | 183MHz      | _    |
| 0.83557625 ms     |                          | R1 :CMD19:  | SET_TUNING_PATTER | N 00 00 09  | 00 5F                    |        | 183MHz      |      |
| 0.9633125 ms      | CMD19:SET_TUNING_PATTERN |             |                   | 00 00 00    | 00 46                    |        | 184MHz      |      |
| 0.96364 ms        |                          | R1 :CMD19:  | SET_TUNING_PATTER | N 00 00 09  | 00 5F                    |        | 184MHz      |      |
| 1.07436 ms        | CMD19:SET_TUNING_PATTERN |             |                   | 00 00 00    | 00 46                    |        | 183MHz      |      |
| 1.0746925 ms      |                          | R1 :CMD19:  | SET_TUNING_PATTER | N 00 00 09  | 00 5F                    |        | 183MHz      |      |
| 1.1921325 ms      | CMD17:READ_SINGLE_BLOCK  |             |                   | 00 00 00    | 00 2A                    |        | 184MHz      |      |
| 1.192465 ms       |                          | R1 :CMD17:  | READ_SINGLE_BLOCK | 00 00 09    | 00 33                    |        | 183MHz      |      |
| 1.4134275 ms      | CMD17:READ_SINGLE_BLOCK  |             |                   | 00 00 00    | 00 2A                    |        | 184MHz      |      |
| 1.413755 ms       |                          | R1 :CMD17:  | READ_SINGLE_BLOCK | 00 00 09    | 00 33                    |        | 184MHz      | -    |
|                   |                          |             |                   |             |                          |        | •           | ſ    |
|                   |                          | (           | ا 2.221 🚪 🍋       | KHz 📕 57    | 3.89 Hz <mark>A</mark> B | 773    | .898 нг 🕒 🚺 | 1111 |

#### Adv. Report





| Time/Div: 7.5 ns  | <b>Q</b> |          |          |            |        |                    |           |         |                    |                      |                    |
|-------------------|----------|----------|----------|------------|--------|--------------------|-----------|---------|--------------------|----------------------|--------------------|
| Acquired: 17:06:4 | 6.6      | 869.3663 | 25 us 86 | 9.37875 us | 869.39 | 125 us             | 869.40375 | us 869. | 41625 us           | 869.42875 us 869.441 | 25 us 869.45375 us |
|                   |          |          |          |            |        |                    |           |         | • • • • • •        |                      |                    |
|                   | 0        | Fh       | FEh      | CCF        | n i    | DCh                | CCh       | 3       | 3h                 | CCh CDh              | FFh EFh —          |
| 0 Clock           |          |          |          |            |        |                    |           |         |                    |                      |                    |
| O CIOCK           |          |          | 1 6      |            | 1      |                    | 0         |         | 1                  |                      | 1 1                |
| 1 Comman          | nd       | 1        |          |            |        |                    |           | 1       |                    |                      |                    |
| SDIO 2 Data[0]    |          |          | ÷        |            |        |                    |           |         | _                  |                      |                    |
|                   | <u> </u> | 1        |          | 0          |        |                    | 0         |         |                    |                      | 1 0                |
| 3 Data[1]         | 0        | 1        |          | 0          | 1      |                    | 0         |         | 1                  | 0                    |                    |
| 4 Data[2]         | a        |          | 1        |            |        |                    | 1         |         | 0                  |                      |                    |
| H Data[2]         | - "      |          | -        | -          | Ľ      |                    | 1         |         | <u> </u>           |                      |                    |
| 5 Data[3]         | 0        |          | 1        |            | 0      |                    | 1         |         | 0                  |                      |                    |
| 5510              |          |          |          |            |        |                    |           |         |                    |                      |                    |
|                   |          |          |          |            |        |                    |           |         |                    |                      |                    |
|                   |          |          |          |            |        |                    |           |         |                    |                      |                    |
|                   |          |          |          |            |        |                    |           |         |                    |                      |                    |
| Label Channel     |          |          | ]        |            |        |                    |           |         |                    |                      | •                  |
| CH-00 CH-00       |          |          |          |            |        |                    |           |         |                    |                      |                    |
| CH-01 CH-00       | A LA L   | S JSDIC  | J(SDIO)  |            |        |                    |           |         |                    |                      |                    |
| Timestamp         | State    | D0(h)    | D1(h)    | D2(h)      | D3(h)  | D4(h)              | D5(h)     | D6(h)   | D7(h)              | Information          | ▲                  |
| 0.56387125 ms     |          |          |          |            |        |                    |           |         |                    | CRC16 OK!            |                    |
| 0.869355 ms       | Data     | ØF       | FE       | CC         | DC     | CC                 | 33        | CC      | CD                 | Nac > 4095           |                    |
| 0.8694425 ms      | Data     | FF       | EF       | FF         | EE     | FF                 | FF        | FF      | FF                 |                      |                    |
| 0.86953 ms        | Data     | DD       | FF       | FB         | FF     | FB                 | BF        | FF      | FF                 |                      |                    |
| 0.8696175 ms      | Data     | F7       | 7F       | 7F         | FE     | FF                 | FF        | 21      | FF                 |                      |                    |
| 0.86970375 ms     | Data     | EØ       | 1F       | CC         | 63     | EC                 | CD        | 3A      | CC                 |                      |                    |
| 0.86979125 ms     | Data     | DF       | FE       | FF         | FE     | ÊF                 | FF        | FF      | FF                 |                      |                    |
| 0.86987875 ms     | Data     | FD       | FF       | FB         | FF     | FF                 | BF        | FF      | 7F                 |                      |                    |
| 0.86996625 ms     | Data     | FF       | F7       | F7         | FF     | EF                 | F5        | 01      | AA                 |                      | <b></b>            |
| •                 |          |          |          |            |        |                    |           |         |                    |                      | •                  |
|                   |          |          |          |            |        | -                  |           |         | _                  |                      |                    |
|                   |          |          |          |            |        | - Reference (1997) | <u>A</u>  | 2.221   | (Hz <mark>B</mark> | 573.89 Hz 🔒          | 773.898 Hz 🕒 🛄 🔟   |

## Data 模式



# Serial Flash

Serial flash (SPI Flash) 25 系列,使用 SPI/QPI 传输协议作为其数据传输之通讯方式。 Serial flash 总线分析提供用户检视信号时,可同时查看命令及输入输出总线信息,节省用户使用 SPI 总线分析波形的时间。

#### 参数设置

| Serial Flash (25 系列) 参数设置                                                                                                                                                                                                      | ×                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 通道设置                                                                                                                                                                                                                           |                                               |
| CS# CH 0 , SCLK CH 1 ,<br>SI/SIO0 CH 2 , SO/SIO1 CH 3 ,<br>WP #/SIO2 CH 4 , Hold #/SIO3 CH 5 ,<br>WP #/SIO2 CH 4 , Hold #/SIO3 CH 5 ,<br>Flash 初始模式设置<br>□ 以 QPI 模式开始<br>□ 以 4-Byte ADDR, 模式开始<br>□ 以 PEM 模式开始<br>□ 以 PEM 模式开始 | 制造厂家<br>Atmel<br>型号<br>AT25DQ161<br>AT25F512B |
| Wrap Around     8 B       QE bit set                                                                                                                                                                                           | tSHSL - 100 ns                                |
| 波形颜色                                                                                                                                                                                                                           |                                               |
| Command Data Out                                                                                                                                                                                                               |                                               |
|                                                                                                                                                                                                                                |                                               |
| Data In 🛛 🔽 Dummy                                                                                                                                                                                                              | <b></b>                                       |
| 分析范围<br>选择要分析的范围<br>起始位置                                                                                                                                                                                                       |                                               |
| 缓冲区开头 ▼ 缓冲区结尾 ▼                                                                                                                                                                                                                |                                               |
|                                                                                                                                                                                                                                | 确定取消                                          |



CS#:信号传输之 Chip select。

SCLK: 信号传输之 Clock。

SIO0-SIO3:数据传输之 Data 引脚。

制造商家/型号:此功能主要是选择正确的 Flash 型号、tCLQV 以及 tSHSL,以 便于命令解析用。若没找到完全符合的型号时,使用者亦可选择命令格式兼容的 型号即可。

Flash 初始模式设置:由于 Serial Flash 可使用命令切换工作模式,逻辑分析仪 采集到波形时,因为不晓得实际 Serial Flash 现行的工作模式。所以,若有需要 时,须请使用者告知。当用户选择的 Flash 型号不支持模式切换时,相关选项 就会被关闭无法设置。

QPI 模式: 指的是 Quad Peripheral Interface Mode 或称 Quad SPI Mode

4-Byte 模式: 指的是 4-Byte Address Mode

PEM 模式: 指的是 Performance Enhance Mode

**Dummy Cycles**: 有些 Read 指令要等候 Dummy cycles. 而其等候的 cycle 数量可预先设置.

Wrap Around: 可缺省 Wrap around 的数值.

**QE bit**: Status register 内的 QE bit. 可做为 QPI mode enable/disable 控制 **仅对 SI 解碼:** 若此选项打勾时,程序将会使用单线模式(Single mode) 3 线模 式来分析波形。这 3 线分别是 CS#/SCLK/SI

仅对 Single 模式译码:若此选项打勾时,程序将会使用单线模式(Single mode) 4 线模式来分析波形。这 4 线分别是 CS/Clock/SI/SO。此时,程序将会忽略切 换多线模式之命令。若两者都没打勾,程序将会根据所选择之 Flash 型号进行 4 线或 6 线模式进行分析。

Command unknown 时: 仅对 SO 或 SI 解碼



| Time/Div: 4 us 🏺                                                                | 4                             |             |              |           |                        |           |          |
|---------------------------------------------------------------------------------|-------------------------------|-------------|--------------|-----------|------------------------|-----------|----------|
| Acquired: 15:56: <sub>1</sub>                                                   | 146.53 us 152.93 us 159.33 us | s 165.73 us | 172.13 us    | 178.53 us | 184.93                 | us 191.33 | us       |
|                                                                                 | Idle (20)5E Add::00           | Addr:00     | Addr:00      | lle (05   | )RDSR1                 | DO:03     | Idle     |
| 19 CS#                                                                          | 1u 32.5u                      |             | <u>ا</u>     |           | 16.Su                  | ı         | tu       |
| 18 SCLK                                                                         |                               |             |              | · IIII    |                        |           |          |
| SFlash 20 SIOO                                                                  | 2.5u tu                       | 35,5u       |              |           | <b>1</b> u 1u          | 6.09u     | 2.5u     |
| 21 SIO1                                                                         |                               | 50u         |              |           |                        | 21        |          |
| 22 SIO2                                                                         |                               | 42.065u     |              |           |                        | 8.92u     |          |
| 23 SIO3                                                                         |                               | 42.06u      |              |           |                        | 8.94u     |          |
|                                                                                 |                               |             |              |           |                        |           | <b>•</b> |
| Label Channel                                                                   | •                             |             |              |           |                        |           | •        |
| CH-00         CH-00           CH-01         CH-00           CH-01         CH-00 | SFlash(Serial Flash)          |             |              |           |                        |           |          |
| Timestamp                                                                       | Command(h)                    | Addr(h)     | PEM(h)       | DO        | D1 D2                  | D3 D4     | D5 D 🔺   |
| 0.0001265 \$                                                                    | (35)Read Status Register-2    |             |              | 02        |                        |           |          |
| 0.000144 S                                                                      | (20)Sector Erase (4KB)        | 000000      |              |           |                        |           |          |
| 0.0001775 %                                                                     | (05)Read Status Register-1    |             |              | 03        |                        |           |          |
| 0.000195 %                                                                      | (35)Read Status Register-2    |             |              | 02        |                        |           |          |
| 0.0002125 %                                                                     | (05)Read Status Register-1    |             |              | 03        |                        |           |          |
| 0.00023 %                                                                       | (35)Read Status Register-2    |             |              | 02        |                        |           |          |
| 0.0002475 %                                                                     | (05)Read Status Register-1    |             |              | 03        |                        |           |          |
| •                                                                               |                               |             |              |           |                        |           |          |
|                                                                                 |                               |             | 2550879458 📕 | 2550      | )879458 <mark>8</mark> |           | 0 © ]][] |

### 使用 SPI 模式 Serial Flash 译码情况

| 使用 | QPI | 模式 | Serial Flash | 译码情况 |
|----|-----|----|--------------|------|
|----|-----|----|--------------|------|

| Time/Div: 2 us 🦊        | 1                                 |           |           |         |                        |         |        |                        |       |              |          |          |
|-------------------------|-----------------------------------|-----------|-----------|---------|------------------------|---------|--------|------------------------|-------|--------------|----------|----------|
| Acquired: 15:56:        | 33.184 ms 33.187 ms 33.19         | ms        | 33.193 ms | 3       | 3.196 ms               | 33.2 ms |        | 33.203 m               | s 33  | .206 ms      |          |          |
|                         | Idle (EB)FRQIO                    | Addr:00   | ) Addr:00 | Addr:00 | PEM:00 D               | MY:00 D | MY:00  | DO:41                  | DO:43 | DO:55        | DO:54    | -        |
| 19 CS#                  | 1u                                |           |           |         |                        |         |        |                        |       |              |          |          |
| 18 SCLK                 |                                   | $\square$ |           | $\Box$  |                        |         | $\Box$ | $\prod$                |       | $\mathbb{L}$ |          |          |
| SFlash 20 SIOD          | 3.50 10 10 20                     | -         |           | 13      | .005u                  |         |        | 1u                     | 1u    | 4u           |          |          |
| 21 SIO1                 |                                   |           | 23.505u   |         |                        |         |        |                        | 1u    |              |          |          |
| 22 SIO2                 |                                   | 20.51     | u         |         |                        |         | 99     | 95n                    | 995n  |              |          |          |
| 23 SIO3<br>SerialFlash  | Л                                 |           |           |         |                        |         |        |                        |       |              |          |          |
|                         |                                   |           |           |         |                        |         |        |                        |       |              |          | •        |
| Label Channel           | •                                 |           |           |         |                        |         |        |                        |       |              | •        |          |
| CH-00 CH-00 CH-00 CH-00 | SFlash(Serial Flash)              |           |           |         |                        |         |        |                        |       |              |          |          |
| Timestamp               | Command(h)                        |           | Addr(h)   |         | PEM(h)                 | DO      | Dl     | D2                     | D3    | D4           | D5 D     |          |
| 0.03312458 \$           | (6B)Quad Output Fast Read         |           | 000020    |         |                        | 51      | 75     | 61                     | 64    | 20           | 50 7     |          |
| 0.03318208 \$           | (EB)Quad Input / Output FAST_READ |           | 000000    |         | 00(reset)              | 41      | 43     | 55                     | 54    | 45           | 20 5     | -        |
| 0.03321958 \$           | (EB)Quad Input / Output FAST_READ |           | 000020    |         | 00(reset)              | 51      | 75     | 61                     | 64    | 20           | 50 72    | i        |
| 0.03325708 \$           | (EB)Quad Input / Output FAST_READ |           | 000000    |         | AO(set)                | 41      | 43     | 55                     | 54    |              |          |          |
| 0.03328658 5            |                                   |           | 000020    |         | AU(set)                | 51      | 75     | 61                     | 64    |              |          |          |
| 0.03330808 5            |                                   |           | 000000    |         | AU(Set)                | 41      | 43     | 55                     | 54    |              |          | -        |
| 0.03332930 5            |                                   |           | 000000    |         | oo(resec)              | 41      | 40     | 33                     | 34    |              |          | <u> </u> |
|                         |                                   |           |           |         |                        |         |        |                        |       |              | <u> </u> | 1        |
|                         |                                   |           | A         | 2550    | )879458 <mark>B</mark> | 255     | 08794  | 58 <mark>A</mark><br>B |       |              | 0 © ]]]  | TT       |



#### Serial Flash Bus Decode Dump & Compare

使用时机: 欲利用逻辑分析仪采集到的 Serial Flash 讯号找出 Serial Flash 内部错误之数据。

使用方法:利用文字编辑软件编辑1个文件名为 SFCmp.cfg 的文本文件,请将

该档案放置到逻辑分析仪软件工作目录下,默认路径为:我的文档/Acute/。



SFCmp.cfg 的档案内容说明如下:



请输入 OrgFile=档案路径,该档案为 Serial Flash 内部原始数据文件,扩展名

为.bin。此档案由使用者提供并将该档案放置到所输入的文件 案路径上。

请输入 OutFile=档案路径,该档案为合并逻辑分析仪所采集的 Serial Flash 数据



输出文件,该档案会由程序自动产生,用户只需输入档案路径和文件名。 请输入 OutLstFile=档案路径,该档案为数据比较结果之输出文件,扩展名为.lst 该档案为文本文件会由程序自动产生,用户只需输档案路径和文件名。 请输入 CheckCmd=待检查之 Serial Flash 指令,该指令以16进制数值填入,以

逗号作为指令区隔。

将 Serial Flash 内部原始数据文件放置到指定的路径,此例是放置到和 SFCmp.cfg 档案相同目录下。



执行逻辑分析仪软件并开启 Serial Flash Bus Decode 功能 Serial Flash Bus Decode Dump & Compare 功能必须在 Serial Flash Bus Decode 开启下才会运作。按下撷取数据让逻辑分析仪来采集 Serial Flash 讯号。



| Eile Label    | <u>W</u> aveform <sub>Run</sub> Devi                                                                                                          | ce <u>T</u> ools <u>H</u> elp                                                                                                                                                                                                                                                                                                                           | l .                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                           |           |                                                                    |           |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------|-----------|
| 😤 🚺           | 🚍 🗇 🛍 🛍 🔁 🖉 🚱                                                                                                                                 | 🗣 🕊 🔎 🔎 🔎                                                                                                                                                                                                                                                                                                                                               | )▼│╨┸∄″ฑ๛                                                                                                                                                                                                                                                                                                                                                  | 🍠 - 🔲 🚑 🚓 🛛                                                                                                                                                                                                                                                                                               | 🔂 💳 🔳 🖉   | ጶ S/R: 200                                                         | MHz       |
| Time/Div: 30  | ns                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |           |                                                                    | 3         |
| Acquired: 15  | :20:56.0 -4.6                                                                                                                                 | 51 ms -4.651 ms                                                                                                                                                                                                                                                                                                                                         | -4.651 ms -4.651                                                                                                                                                                                                                                                                                                                                           | ms -4.651 ms                                                                                                                                                                                                                                                                                              | -4.651 ms | -4.651 ms                                                          |           |
| NAND          | 9 I/00<br>10 I/01<br>11 I/02<br>12 I/03<br>13 I/04<br>14 I/05<br>15 I/06<br>16 I/07<br>19 CLE<br>20 ALE<br>18 WE<br>21 RE<br>21 RE<br>10 I/01 | 40n         40n         40n           30n         10n         30n         10n | DO: FE         DO: \$3         40n           40n         40n           80n         80n           40n         40n           30n         90n | Address         DOis 15           40n         400           80n           40n         400           30n         10n |           | 40n<br>80n<br>40n<br>80n<br>80n<br>80n<br>80n<br>80n<br>80n<br>80n | 200- 100r |
| Nand F        | 24 CE1<br>23 R/B1<br>Channel Value                                                                                                            |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |           |                                                                    | <b>•</b>  |
| (CH-00) CH-01 |                                                                                                                                               | d Flash) 👤                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |           |                                                                    |           |
| Timestamp     | Command                                                                                                                                       | Row Address(h)                                                                                                                                                                                                                                                                                                                                          | Column Address(h)                                                                                                                                                                                                                                                                                                                                          | DO D1                                                                                                                                                                                                                                                                                                     | D2 D3     | D4                                                                 | D5 1 🔺    |
| -0.00465      | RANDOM DATA OUTPUT #2(E0)                                                                                                                     | 00000B                                                                                                                                                                                                                                                                                                                                                  | 0000                                                                                                                                                                                                                                                                                                                                                       | C3 3C                                                                                                                                                                                                                                                                                                     | 01 FE     | 93                                                                 | 6C .      |
| -0.00465      |                                                                                                                                               | 00000B                                                                                                                                                                                                                                                                                                                                                  | 0008                                                                                                                                                                                                                                                                                                                                                       | C7 38                                                                                                                                                                                                                                                                                                     | 17 E8     | CA                                                                 | 35 .      |
| -0.00465      |                                                                                                                                               | 00000B                                                                                                                                                                                                                                                                                                                                                  | 0010                                                                                                                                                                                                                                                                                                                                                       | 82 7D                                                                                                                                                                                                                                                                                                     | 20 DF     | E8                                                                 | 17 :      |
| -0.00465      |                                                                                                                                               | 00000B                                                                                                                                                                                                                                                                                                                                                  | 0018                                                                                                                                                                                                                                                                                                                                                       | 8D 72                                                                                                                                                                                                                                                                                                     | 42 BD     | 97                                                                 | 68 ·      |
| -0.00464      |                                                                                                                                               | 00000B                                                                                                                                                                                                                                                                                                                                                  | 0020                                                                                                                                                                                                                                                                                                                                                       | 89 76                                                                                                                                                                                                                                                                                                     | 4C B3     | A9                                                                 | 56        |
| -0.00464      |                                                                                                                                               | 00000B                                                                                                                                                                                                                                                                                                                                                  | 0028                                                                                                                                                                                                                                                                                                                                                       | C8 37                                                                                                                                                                                                                                                                                                     | 50 AF     | 97                                                                 | 68 . 🗸    |
|               | 1                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |           |                                                                    |           |
|               |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                         | 🤹 📕 930                                                                                                                                                                                                                                                                                                                                                    | 0114 🚪 (                                                                                                                                                                                                                                                                                                  | 587790 🔒  | 2423                                                               | 24 ©∏∭    |

因逻辑分析仪的记忆深度有限,所以可能无法一次采集到 Serial Flash 所有数据, 所以可分次储存为多个逻辑分析仪波形文件(.law),再载入波形档即可。

使用 Serial FlashBus Decode Dump & Compare 功能,会先检查 Serial Flash 数据输出文件是否存在于所输入的路径上,若不存在则会先将 Serial Flash 内部原始数据文件复制内容到 Serial Flash 数据输出文件,此例档名为 SF\_Cmp.bin,之后会根据使用者输入待检查的 Serial Flash 指令,将该指令依据地址所得到的数据写入到 SF\_Cmp.bin,最后 SF.bin 会和 SF\_Cmp.bin 做数据比对。



比对结果

| 😂 Acute                                                  |        |
|----------------------------------------------------------|--------|
| 檔案(E) 編輯(E) 檢視(V) 我的最愛(A) 工具(I) 說明(H)                    | 1      |
| ③ 上─頁 • ③ • 参 / 建尋 ▷ 資料夾 ▷ ③ ★ 4 10 111 •                |        |
| 網址 (D) (C:\Documents and Settings\Liu\My Documents\Acute | 💙 🄁 移至 |
| SF.bin SFCmp.efg SF.lst SF_cmp.bin                       |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |
|                                                          |        |

会将数据比对出现差异的结果输出至.lst 档案中,内容如下:

| SF.lst - 記事本                                                                                                                                                                                                                                                    |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 檔案·巴 編輯·E 格式·(2) 檢視·(Y) 説明·E)                                                                                                                                                                                                                                   |         |
| OrgFile=C:\Documents and Settings\Liu\My Documents\Acute\2Mbit_origin.bin<br>OutFile=C:\Documents and Settings\Liu\My Documents\Acute\2Mbit_origin_cmp.bin                                                                                                      |         |
| 00001321 00001399: E2 E0<br>00001321 00001301: 52 50<br>00001430: 00001461: 73 71<br>00001430: 0000148F: D3 D1<br>00001430: 0000148F: D3 D1<br>00001430: 0000148F: E3 E1<br>00001405: 0000148F: F3 F1<br>00001590: 00001508: F3 F1<br>00001590: 000015E6: 42 40 |         |
|                                                                                                                                                                                                                                                                 |         |
|                                                                                                                                                                                                                                                                 | 第1列,第1行 |

第一栏的地址为出现比对差异,当时所下的开始地址;第二栏是实际发生比对差异时的地址。第一栏数据对应到数据原始文件,也就是 SF.bin;第二栏数据则是对应到数据输出文件 SF\_cmp.bin。若无资料差异的情况发生,则这2栏将为空白,只会显示上方的需比对之档案路径。



# Serial IRQ

Serial IRQ/Data 是以 PCI-Clock 和 IRQSER 两线组成,用以传递中断状态的一种 通讯协议。一个 IRQSER Cycle 基本上包含了三个部分:Start、IRQ/Data 和 Stop Frame。其运作的模式区分为 Continuous mode 和 Quiet mode。在 Continuous mode 模式下 Start Frame 来源并不受限,但是在 Quiet mode 模式下只有 Host 能产生 Start Frame 讯号。

#### 参数设置

| Serialize | d IRQ 参数设置                       | × |
|-----------|----------------------------------|---|
| 参数设       | 置                                | _ |
| 2         | CLOCK Clk = 2 + IRQSER IRQ = 3 + |   |
|           | - 报告格式                           |   |
|           |                                  |   |
|           |                                  |   |
| 波形颜       | 色                                | - |
|           | Start Frame                      |   |
|           | Stop Frame                       |   |
|           | Assert Frame                     |   |
|           | Dessert Frame                    |   |
| 分析范       | 围                                |   |
| inn:      | 选择要分析的范围                         |   |
| <b>*</b>  | 起始位置结束位置                         |   |
|           | 缓冲区开头 ▼ 缓冲区结尾 ▼                  |   |
|           | 缺省 确定 取消                         |   |

CLOCK: PCI Clock 讯号

IRQSER: IRQSER 讯号


Normal: 将同一个 Frame 的讯号展开在同一行上

隐藏重复的讯号 (缺省)

| Clock    | No.   | Mode          | 0 | 1 | SMI | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | IRQ |
|----------|-------|---------------|---|---|-----|---|---|---|---|---|---|---|----|----|----|----|----|----|-----|
| 10286946 | 22830 | Continue mode |   | A |     |   |   |   | Α |   |   |   |    |    | Α  |    |    |    |     |
| 10291906 | 22841 | Continue mode |   | Α |     |   |   |   |   |   |   |   |    |    | Α  |    |    |    |     |
| 10404663 | 23091 | Continue mode |   | Α |     |   |   |   | Α |   |   |   |    |    | Α  |    |    |    |     |
| 10415039 | 23114 | Continue mode |   | Α |     |   |   |   |   |   |   |   |    |    | Α  |    |    |    |     |
| 10459240 | 23212 | Continue mode |   | Α |     |   |   |   | Α |   |   |   |    |    | Α  |    |    |    |     |
| 10461943 | 23218 | Continue mode |   | Α |     |   |   |   |   |   |   |   |    |    | Α  |    |    |    |     |
| 10580112 | 23480 | Continue mode |   | Α |     |   |   |   | Α |   |   |   |    |    | Α  |    |    |    |     |
| 10590037 | 23502 | Continue mode |   | Α |     |   |   |   |   |   |   |   |    |    | Α  |    |    |    |     |
| 10634238 | 23600 | Continue mode |   | Α |     |   |   |   | Α |   |   |   |    |    | Α  |    |    |    |     |
| 10636941 | 23606 | Continue mode |   | A |     |   |   |   |   |   |   |   |    |    | Α  |    |    |    |     |

#### 显示重复的讯号

| Clock    | No.   | Mode          | 0 | 1 | SMI | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | IRQ |
|----------|-------|---------------|---|---|-----|---|---|---|---|---|---|---|----|----|----|----|----|----|-----|
| 10457887 | 23209 | Continue mode |   | А |     |   |   |   |   |   |   |   |    |    | А  |    |    |    |     |
| 10458338 | 23210 | Continue mode |   | Α |     |   |   |   |   |   |   |   |    |    | Α  |    |    |    |     |
| 10458789 | 23211 | Continue mode |   | Α |     |   |   |   |   |   |   |   |    |    | Α  |    |    |    |     |
| 10459240 | 23212 | Continue mode |   | Α |     |   |   |   | Α |   |   |   |    |    | Α  |    |    |    |     |
| 10459690 | 23213 | Continue mode |   | Α |     |   |   |   | Α |   |   |   |    |    | Α  |    |    |    |     |
| 10460140 | 23214 | Continue mode |   | Α |     |   |   |   | Α |   |   |   |    |    | Α  |    |    |    |     |
| 10460590 | 23215 | Continue mode |   | Α |     |   |   |   | Α |   |   |   |    |    | Α  |    |    |    |     |
| 10461041 | 23216 | Continue mode |   | Α |     |   |   |   | Α |   |   |   |    |    | Α  |    |    |    |     |
| 10461492 | 23217 | Continue mode |   | Α |     |   |   |   | Α |   |   |   |    |    | Α  |    |    |    |     |
| 10461943 | 23218 | Continue mode |   | Α |     |   |   |   |   |   |   |   |    |    | Α  |    |    |    |     |
| 10462394 | 23219 | Continue mode |   | Α |     |   |   |   |   |   |   |   |    |    | Α  |    |    |    |     |
| 10462846 | 23220 | Continue mode |   | Α |     |   |   |   |   |   |   |   |    |    | Α  |    |    |    |     |
| 10463298 | 23221 | Continue mode |   | Α |     |   |   |   |   |   |   |   |    |    | Α  |    |    |    |     |

Advance:将一个 Frame 中所有的 IRQ/Data 讯号摊开在不同行

| Clock | IRQ/Data Frame | Signal Sampled | # of clocks past Start |
|-------|----------------|----------------|------------------------|
| -9470 | 1              | IRQO           | 2                      |
| -9452 | 2              | IRQ1           | 5                      |
| -9434 | 3              | SMI#           | 8                      |
| -9416 | 4              | IRQ3           | 11                     |
| -9398 | 5              | IRQ4           | 14                     |
| -9380 | 6              | IRQ5           | 17                     |
| -9362 | 7              | IRQ6           | 20                     |
| -9344 | 8              | IRQ7           | 23                     |
| -9326 | 9              | IRQ8           | 26                     |
| -9308 | 10             | IRQ9           | 29                     |
| -9290 | 11             | IRQ10          | 32                     |
| -9272 | 12             | IRQ11          | 35                     |
| -9254 | 13             | IRQ12          | 38                     |
| -9236 | 14             | IRQ13          | 41                     |
| -9217 | 15             | IRQ14          | 44                     |
| -9199 | 16             | IRQ15          | 47                     |
| -9181 | 17             | IOCHCK#        | 50                     |
| -9163 | 18             | INTA#          | 53                     |
| -9145 | 19             | INTB#          | 56                     |
| -9127 | 20             | INTC#          | 59                     |
| -9109 | 21             | INTD#          | 62                     |
| -9019 | 1              | IRQ0           | 2                      |
| -9001 | 2              | TR01           | 5                      |



## 分析结果

Normal mode(隐藏重复的讯号)



Normal mode(显示重复的讯号)

| Time/Div: 60 ns              | <b>9</b> |                     |       |   |           |    |        |      |       |      |     |        |                        |        |     |        |       |
|------------------------------|----------|---------------------|-------|---|-----------|----|--------|------|-------|------|-----|--------|------------------------|--------|-----|--------|-------|
| Acquired: 10:23:0            | 7.0      | 14.372 ms 14.3      | 72 ms |   | 14.372 ms | :  | 14.372 | ms   | 14.37 | 2 ms | 14. | 872 ms | 14.<br>                | 372 ms | 14  | .372 m | 5     |
|                              | Stop     | Idle                | Start |   | IRC       | 20 | IR     | Q1-A | S     | 4I#  | IF  | RQ3    | IR                     | 24     | IRC | 25     |       |
| SERIRQ 2                     |          |                     |       |   |           |    |        |      |       |      |     |        |                        |        |     |        |       |
| Serialized IRQ               |          | 90n 120n            |       |   | 155n      |    | 30n    |      |       |      |     | 425r   | ٦                      |        |     |        |       |
|                              |          |                     |       |   |           |    |        |      |       |      |     |        |                        |        |     |        | •     |
| Label                        | hanne    |                     |       |   |           |    |        |      |       |      |     |        |                        |        |     |        | •     |
| (CH-00) CH-00<br>CH-01 CH-00 | <u> </u> | K SERIRQ(Serialized | IRQ)  | • |           |    |        |      |       |      |     |        |                        |        |     |        |       |
| Timestamp                    | No.      | Mode                | 0     | 1 | SMI       | 3  | 4      | 5    | 6 7   | 8    | 9   | 10     | 11 1                   | 2 13   | 14  | 15     | IRC 🔺 |
| 14.36949 ms                  | 6394     | Continue mode       |       | A |           |    |        |      |       |      |     |        | A                      |        |     |        |       |
| 14.371745 ms                 | 6395     | Continue mode       |       | A |           |    |        |      | A     |      |     |        | A                      |        |     |        |       |
| 14.374 ms                    | 6396     | Continue mode       |       | A |           |    |        |      | A     |      |     |        | A                      |        |     |        |       |
| 14.37626 ms                  | 6397     | Continue mode       |       | A |           |    |        |      | A     |      |     |        | A                      |        |     |        |       |
| 14.37852 ms                  | 6398     | Continue mode       |       | A |           |    |        |      | A     |      |     |        | A                      |        |     |        |       |
| 14.38078 ms                  | 6399     | Continue mode       |       | A |           |    |        |      | A     |      |     |        | A                      |        |     |        |       |
| 14.383035 ms                 | 6400     | Continue mode       |       | A |           |    |        |      | A     |      |     |        | A                      |        |     |        |       |
| 14.385295 ms                 | 6401     | Continue mode       |       | A |           |    |        |      | A     |      |     |        | A                      |        |     |        |       |
| 14.38755 ms                  | 6402     | Continue mode       |       | A |           |    |        |      | A     |      |     |        | A                      |        |     |        |       |
| 14.3898 ms                   | 6403     | Continue mode       |       | A |           |    |        |      | A     |      |     |        | A                      |        |     |        |       |
| 14.392055 ms                 | 6404     | Continue mode       |       | A |           |    |        |      | A     |      |     |        | A                      |        |     |        |       |
| 14.394305 ms                 | 6405     | Continue mode       |       | A |           |    |        |      | A     |      |     |        | A                      |        |     |        |       |
| 14.396555 ms                 | 6406     | Continue mode       |       | A |           |    |        |      | A     |      |     |        | A                      |        |     |        |       |
| •                            |          |                     |       |   |           |    |        |      |       |      |     |        |                        |        |     |        |       |
|                              |          |                     |       |   |           | A  |        |      | 34298 | B    |     | 231    | 15 <mark>A</mark><br>B |        | 319 | 83 🕒   |       |



### Advance mode

| Time/Div: 60 ns               | Ţ              |                     |                             |                               |
|-------------------------------|----------------|---------------------|-----------------------------|-------------------------------|
| Acquired: 10:23:0             | 7.0 14.372 ms  | 14.372 ms 14.372 ms | 14.372 ms 14.372 ms         | 14.372 ms 14.372 ms 14.372 ms |
|                               | Stop Idle      | Start               | Q0 <mark>IRQ1-A</mark> SMI# | IRQ3 IRQ4 IRQ5                |
| SERIRQ 2                      |                |                     |                             |                               |
| 3<br>Sorializod IRQ           | IRQ 90n        | 120n 155n           | 30n                         | 425n                          |
|                               |                |                     |                             | <b>•</b>                      |
| Label (                       | Thanne 🔹       |                     |                             | Þ                             |
| Ch-00 CH-00 CH-00 CH-00 CH-00 |                | erialized IRQ) 💌    |                             |                               |
| Timestamp                     | IRQ/Data Frame | Signal Sampled      | # of clocks past Start      | ▲                             |
| 14.371445 ms                  | 21             | INTD#               | 62                          |                               |
| 14.371895 ms                  | 1              | IRQO                | 2                           |                               |
| 14.371985 ms                  | 2              | IRQ1                | 5                           |                               |
| 14.372075 ms                  | 3              | SMI#                | 8                           |                               |
| 14.372165 ms                  | 4              | IRQ3                | 11                          |                               |
| 14.372255 ms                  | 5              | IRQ4                | 14                          |                               |
| 14.372345 ms                  | 6              | IRQ5                | 17                          |                               |
| 14.372435 ms                  | 7              | IRQ6                | 20                          |                               |
| 14.372525 ms                  | 8              | IRQ7                | 23                          |                               |
| 14.372615 ms                  | 9              | IRQ8                | 26                          |                               |
| 14.37271 ms                   | 10             | IRQ9                | 29                          |                               |
| 14.3728 ms                    | 11             | IRQ10               | 32                          |                               |
| 14.37289 ms                   | 12             | IRQ11               | 35                          | <b>•</b>                      |
| <u> </u>                      |                |                     |                             |                               |
|                               |                |                     | A 34298                     | 2315 🛔 31983 🕒 🛙 🎁            |



# **SGPIO**

SGPIO(Serial General Purpose Input Output Serial)是一种通用的输入输出,使用者可以自行控制输入输出。

| 参数设置     | L<br>-                                 |                                      |      |                                                          |   |
|----------|----------------------------------------|--------------------------------------|------|----------------------------------------------------------|---|
| SGPIO 参数 | 设置                                     |                                      |      |                                                          | × |
| 参数设置     | ) at 1-44 ) rt and                     |                                      | 波形颜色 | 设置数据的颜色                                                  |   |
| 1.4      | 一週退夜直<br>Clock<br>Load<br>▼ DO<br>▼ DI | CH 0 V<br>CH 1 V<br>CH 2 V<br>CH 3 V | 范围选择 | Load<br>Data<br>送择要分析的范围<br>起始位置<br>缓冲区开头<br>文<br>援深户区结尾 | ¥ |
|          |                                        |                                      |      | 缺省 确定 取得                                                 | 俏 |

**通道设置:**设置待测物上各个讯号端接在逻辑分析仪的通道编号。分别是 Clock、 Load、 Data Out 以及 Data In。可选择只要 Data Out、 Data In 或是都需要

| 分析结末                                                                          |               |          |                   |                     |                   |                   |                      |
|-------------------------------------------------------------------------------|---------------|----------|-------------------|---------------------|-------------------|-------------------|----------------------|
| Time/Div: 2.048 m                                                             | 3             |          |                   |                     |                   |                   |                      |
| Acquired: 13:35:2                                                             | 5.924 r       | ns       | 9.201 ms 12.477   | ms 15.754 ms        | 19.031 ms 22      | .308 ms 25.585 r  | ns 28.861 ms         |
|                                                                               | DI: 3 DI: 6   | DI: 1    | DI: 2 DI: 3 DI: 7 | DI: 0 DI: 3 DI: 6 D | DI: 1 DI: 2 DI: 3 | DI: 7 DI: 0 DI: 3 | DI ( 6 DI : 1 DI : 2 |
| 0 Ck                                                                          |               |          |                   |                     |                   |                   |                      |
| SGPIO 1 Load                                                                  |               |          | 8.081m            |                     | 8.081m            |                   |                      |
| 2 DO                                                                          | 1.51          | 5m 1.529 | m 1.475m 1.1      | 1.515m              | 1.525m            | 1.475m 1.12m      | 1.515m 1.525m        |
| 3 DI<br>SGPIO                                                                 | 1.335m 1.775m | 3.205    | m 3.7m            | 1.335m 1.775m       | 3.205m 3.7        | m 1.335m 1.       | 775m 3.205m 🗾 🔽      |
| Label Channe                                                                  |               |          |                   |                     |                   |                   |                      |
| CH-00         CH-00         CH-00           CH-01         CH-00         CH-00 |               | GPIO(S   | GPIO) 🔽           |                     |                   |                   |                      |
| Timestamp                                                                     | Device        | LOAD     | Activity(ODn.0)   | Locate(ODn.1)       | Fail(ODn.2)       | ID                | ▲                    |
| 0.005198845 S                                                                 | Device 1      |          | No Activity       | Locate              | Fail              | Enable            | _                    |
| 0.006699005 %                                                                 | Device 2      |          | Activity          | No locate           | OK                | No connect        |                      |
| 0.008199165 S                                                                 | Device 3      |          | No Activity       | Locate              | OK                | No connect        |                      |
| 0.00969932 S                                                                  | Device 4      |          | Activity          | Locate              | OK                | Enable            |                      |
| 0.01119948 S                                                                  | Device 5      |          | Activity          | Locate              | Fail              | Enable            |                      |
| 0.01269964 %                                                                  | Device 6      |          | No Activity       | No locate           | OK                | Enable            |                      |
| 0.014314815 S                                                                 | Device O      | A        | Activity          | Locate              | OK                | Enable            |                      |
| 0.01581497 \$                                                                 | Device 1      |          | No Activity       | Locate              | Fail              | Enable            |                      |
| 0.01731513 \$                                                                 | Device 2      |          | Activity          | No locate           | OK                | No connect        |                      |
| 0.01881529 \$                                                                 | Device 3      |          | No Activity       | Locate              | OK                | No connect        |                      |
| 0.02031545 \$                                                                 | Device 4      |          | Activity          | Locate              | OK                | Enable            |                      |
| 0.02181561 \$                                                                 | Device 5      |          | Activity          | Locate              | Fail              | Enable            |                      |
| 0.02331577 \$                                                                 | Device 6      |          | No Activity       | No locate           | OK                | Enable            |                      |
| •                                                                             |               |          |                   |                     |                   |                   |                      |
|                                                                               |               |          |                   |                     |                   |                   |                      |

## 分析结果



# Smart Card (ISO7816)

Smart Card 一般又称为 IC 卡或 IC 芯片卡,不同的 IC 芯片其功能及应用也有不同。Smart Card 主要是用来识别、纪录以及编/译码。

| mart Carc    | l (ISO7816) 参数                   | 设置              |      |                                |          |          | × |
|--------------|----------------------------------|-----------------|------|--------------------------------|----------|----------|---|
| 参数设置         |                                  |                 | 波形颜色 |                                |          |          |   |
| 1            | CLK CH 0<br>DATA CH 1<br>ETU 372 | Clock (16~2048) |      | 设 <u>置</u> 数据<br>Start<br>Data | 居的颜色<br> | <u> </u> |   |
| 范围选择         | 选择要分析的范                          | 1               |      | Parity<br>Stop                 |          |          |   |
| <b>}</b> −−4 | 起始位置<br> 緩冲区开头                   | 结束位置<br>▼ 缓冲区结尾 | V    |                                |          |          |   |
|              |                                  |                 | 缺省   |                                | 确定       | 取消       |   |

参数设置:设置待测物上各个信号端接在逻辑分析仪的通道编号。

CLK: 信号传输之 Clock。

DATA: 数据传输之 Data 引脚。

ETU(Elementary Time Unit):每个 Bit 内所包含的 Clock 数目。

| 分析结果                           |           |            |                |          |            |        |          |          |                |
|--------------------------------|-----------|------------|----------------|----------|------------|--------|----------|----------|----------------|
| Time/Dig: 128 us               | B         |            |                |          |            |        |          |          |                |
| homired: 16:27:3               | 2.0       | 6 668 ms   | 6.873 ms       | 7 078 ms | 7.283 ms 7 | 487 ms | 7 692 ms | 7 897 ms | 8 102 ms       |
| Acquired. 10.27.5              |           |            | 1.1.1.1.1.1    |          |            |        | 1.1.1.1  |          | 1.1.1.1.1.1.   |
|                                | Data: 11h | STO        | OK Start       |          | Data: 0h   |        |          | STOP: OK | Start Data: 0h |
|                                |           |            |                |          | _          |        |          |          |                |
| Smart Card SC                  | LK        |            |                |          |            |        |          |          |                |
| 10                             | ATA       | 185.       | 245u           |          | 923,755u   |        | Γ        | 185.24u  |                |
| Smart Card                     |           |            |                |          |            | _      |          |          |                |
|                                |           |            |                |          |            |        |          |          |                |
|                                |           |            |                |          |            |        |          |          |                |
|                                |           |            |                |          |            |        |          |          |                |
|                                |           |            |                |          |            |        |          |          |                |
|                                |           |            |                |          |            |        |          |          |                |
| Label Ch                       | nannel    |            |                |          |            |        |          |          | •              |
| ⊙/Ⅲ CH-00 CH-00<br>CH-01 CH-00 | RR Bus    | Smart Card | l(Smart Card 🖵 |          |            |        |          |          |                |
| Timestamp                      | Data      | Parity     | Error          | Value    |            |        |          |          | <b>^</b>       |
| 1.88369 ms                     | 11011100  | 1          | 0K             | 59       |            |        |          |          |                |
| 4.64551 ms                     | 11101111  | 1          | OK             | 247      |            |        |          |          |                |
| 5.75451 ms                     | 10001000  | 0          | OK             | 17       |            |        |          |          |                |
| 6.86351 ms                     | 00000000  | U          | UK             | U        |            |        |          |          |                |
| 7.972505 ms                    | 10000000  | 0          | UK             | 120      |            |        |          |          |                |
| 9.0015 ШS                      | 10000001  | U          | UK             | 129      |            |        |          |          |                |
|                                |           |            |                |          |            |        |          |          |                |
|                                |           |            |                |          |            |        |          |          |                |
|                                |           |            |                |          |            |        |          |          |                |
|                                |           |            |                |          |            |        |          |          |                |
|                                |           |            |                |          |            |        |          |          |                |
|                                |           |            |                |          |            |        |          |          |                |
| •                              |           |            |                |          |            |        |          |          | ▶              |
|                                |           |            |                |          | A 184      | 71 📕   | 18514    | A<br>B   | 43 🕒 🕕 🎁       |



# **SMBus**

全名系统管理总线(System Management Bus)源自于 I<sup>2</sup>C 总线,是一种两条讯号所 组成的一种总线。SMBus 由 Intel 于 1995 年所定义,包含有 Clock、Data 以及基 于 Philips' I<sup>2</sup>C serial bus 协议的指令。其时钟频率范围在 10KHz 到 100KHz。

参数设置

| SMBus 参数设置                                                   |                                                                                                                                                                               |                                                                                                                                        | × |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---|
| 參數设置                                                         |                                                                                                                                                                               | 波形颜色                                                                                                                                   |   |
| → 通道设置<br>SMBCLK CH<br>SMBDATA CH<br>一地址设置<br>一 花告设置<br>⑥ SM | ☆析设置<br>PEC分析<br>© DDR3<br>© DDR2<br>© DDR<br>© SPD SDRAM<br>it addressing (Include R/W in Address)<br>IBus<br>ow SBS(Smart Battery System)<br>ow SBD(Corial Procence Detect) | 设置命令的颜色   Command   Address   Write / Read   Start / Stop / Sr   ACK / NACK    PEC / Word / Byte Count   Data / Content   Word Address |   |
| □ 过<br>○ 忽略毛刺<br>分析范围<br>选择要分析的范围<br>起始位置<br>[缓冲区开头]         | 湖非SPD项目      结束位置     ▼   缓冲区结尾                                                                                                                                               |                                                                                                                                        |   |

SMBCLK: SMBus 数据传输之 Clock。

SMBDATA: SMBus 数据传输之 Data。

分析设置:设置 SMBus 讯号封包译码方式,包含 PEC 分析,以及 SPD-DDR3、

SPD-DDR2、SPD-DDR、SPD SDRAM 解碼。

7-bit addressing (Include R/W in Address):显示 8 位宽度地址(7 位宽度地址加

上1位Rd/Wr)。



SMBus: 默认选项,报告窗口显示 SMBus 分析内容。

Show SBS: 报告窗口显示智能型电池(Smart Battery System)分析内容;内容显示电池的状态以及信息,例如:电压、电流或制造商信息等。

Show SPD(Serial Presence Detect): 报告窗口显示 EEPROM 分析内容;内容显示内存模块(DDR3、DDR2、DDR、SPD SDRAM)的配置信息,如 P-Bank 数量、 电压、行地址/列地址数量、位宽、各种主要操作时序(如 CL、tRCD、tRP、tRAS 等)。

过滤非 SBS/SPD 项目: 报告窗口仅显示 SBS/SPD 项目。

忽略噪声:分析时忽略因跳变过缓所造成的噪声。

分析结果

**SMBus** 





| Time/Div: 80 us                   | <b></b> |                       |                                                                                                             |            |           |
|-----------------------------------|---------|-----------------------|-------------------------------------------------------------------------------------------------------------|------------|-----------|
| Acquired: 14:33:0                 | 2.0     | 312.705 ms 312.833 ms | 312.961 ms 313.089 ms 313.217 ms 313.345 ms                                                                 | 313.473 ms |           |
| CH-00 1 S<br>SHEW 0 S<br>Label Ch | MBCLK   | xddr: 0B A Cmd: 0A    | A     Addr: 06     A     Byte_L: F3       10     193.9u     1001.9u     56.1u     45.6u     42.5u     96.2u | 138u       | yte_H: FF |
| CH-00 CH-00 CH-00 CH-00           | AA 🔎    | CH-00(SMBus)          |                                                                                                             |            |           |
| Timestamp                         | Addr    | Function              | Content                                                                                                     | Unit       | Durati 🔺  |
| 0.5937446 5                       | OB      | AverageTimeToFull(13) | 65535                                                                                                       | minutes    | 1494 ı    |
| 0.6249973 5                       | 0B      | ChargingCurrent(14)   | 0                                                                                                           | mA         | 1465 i    |
| 0.6563065 %                       | OB      | ChargingVoltage(15)   | 0                                                                                                           | mV         | 1557 ι    |
| 0.6874855 \$                      | OB      | BatteryStatus(16)     | 4BD0h                                                                                                       | bit flags  | 1467 i    |
| 0.6874855 \$                      |         |                       | Alarms{TERMINATE_CHARGE_ALARM                                                                               |            |           |
| 0.6874855 \$                      |         |                       | TERMINATE_DISCHARGE_ALARM                                                                                   |            |           |
| 0.6874855 \$                      |         |                       | REMAINING_CAPACITY_ALARM                                                                                    |            |           |
| 0.6874855 \$                      |         |                       | REMAINING_TIME_ALARM}                                                                                       |            |           |
| 0.6874855 S                       |         |                       | Status (INITIALIZED                                                                                         |            |           |
| 0.6874855 %                       |         |                       | DISCHARGING                                                                                                 |            |           |
| 0.6874855 \$                      |         |                       | FULLY_DISCHARGED }                                                                                          |            |           |
| 0.6874855 \$                      |         |                       | Error(None)                                                                                                 |            |           |
| 0.7187386 \$                      | OB      | CycleCount(17)        | 0                                                                                                           | count      | 1569 i 🖵  |
|                                   |         |                       |                                                                                                             |            |           |
|                                   |         |                       | 1276026 <mark>B</mark> 7196                                                                                 | 128322     | 2 © ]]] 🎹 |

# Show SBS (Smart Battery System)

## Show SPD (Serial Presence Detect)

| Time/Div: 16       | us                                  |               |                                  |                           |                       | <b>A</b>         |  |  |  |  |  |  |  |
|--------------------|-------------------------------------|---------------|----------------------------------|---------------------------|-----------------------|------------------|--|--|--|--|--|--|--|
| Acquired: 15:      | :18:35.0                            | 56.523        | ms 56.549 ms 56.574 ms 56.6 ms   | 56.625 ms 56.651 r        | ms 56.677 i           | ms 56.702 ms     |  |  |  |  |  |  |  |
|                    |                                     | Idle          | Wr: A4                           | Byte Nu                   | imber: 02             | A .              |  |  |  |  |  |  |  |
| SMBus 0 S          | MBCLK                               |               |                                  | 3.440                     |                       | L6.7u            |  |  |  |  |  |  |  |
| 1 S<br>Smew        | MBDATA                              | 7.4u 10.58u 1 | 0.520 10.580 21.10 10.580 30.260 | 6D.66u                    | 10.5                  | 2u 19.64u 12.28u |  |  |  |  |  |  |  |
| Label Ch           | nannel                              | •             |                                  |                           |                       | •                |  |  |  |  |  |  |  |
| (CH-00)<br>(CH-01) | CHI CHAOS CHAOS RR DEW SMBus(SMBus) |               |                                  |                           |                       |                  |  |  |  |  |  |  |  |
| Timestamp          | Addr                                | Byte Number   | Function Described(Word Addr)    | Function Support          | Duration              | Information      |  |  |  |  |  |  |  |
| 56.36604 ms        | A2                                  |               |                                  |                           | 113 us                | NACK             |  |  |  |  |  |  |  |
| 56.50626 ms        | A5                                  | 02            | Key Byte/DRAM Device Type        | DDR3 SDRAM                | 425 us                | NACK             |  |  |  |  |  |  |  |
| 56.97236 ms        | A5                                  | 02            | Key Byte/DRAM Device Type        | DDR3 SDRAM                | 424 us                | NACK             |  |  |  |  |  |  |  |
| 57.43896 ms        | A5                                  | 02            | Key Byte/DRAM Device Type        | DDR3 SDRAM                | 425 us                | NACK             |  |  |  |  |  |  |  |
| 57.90758 ms        | A5                                  | 80            | Module Part Number               | 'I'                       | 426 us                | NACK             |  |  |  |  |  |  |  |
| 58.37762 ms        | A5                                  | 81            | Module Part Number               | 'M'                       | 425 us                | NACK             |  |  |  |  |  |  |  |
| 58.84354 ms        | A5                                  | 82            | Module Part Number               | 151                       | 425 us                | NACK             |  |  |  |  |  |  |  |
| 59.31292 ms        | A5                                  | 83            | Module Part Number               | 'H'                       | 425 us                | NACK             |  |  |  |  |  |  |  |
| 59.78278 ms        | A5                                  | 84            | Module Part Number               | 151                       | 424 us                | NACK             |  |  |  |  |  |  |  |
| 60.2518 ms         | A5                                  | 85            | Module Part Number               | 111                       | 425 us                | NACK             |  |  |  |  |  |  |  |
| 60.71948 ms        | A5                                  | 86            | Module Part Number               | יטי                       | 425 us                | NACK             |  |  |  |  |  |  |  |
| 61.18644 ms        | A5                                  | 87            | Module Part Number               | '0'                       | 425 us                | NACK             |  |  |  |  |  |  |  |
| ·                  | 1                                   |               |                                  |                           |                       |                  |  |  |  |  |  |  |  |
|                    |                                     |               | A                                | 22464 <mark>B</mark> 1196 | 7715 <mark>A</mark> B | 11990179 🕒 🔟 🎁   |  |  |  |  |  |  |  |



# SMI

SMI(Serial Microprocessor Interface)是 BDNC 所制定,使用接口由一个 Clock 以

及 Data 所组成。

### 参数设置

| SMI 参数设置                               | Ē 🛛 🔀        |
|----------------------------------------|--------------|
| 参数设置                                   |              |
| 📝 CIK                                  | Data         |
| CH 0                                   | ▼ CH1 ▼      |
| 波形顏色 ————                              |              |
| (]]) 设置数据的额                            | 颜色           |
| Attn                                   | <b></b>      |
| Sel/Desel                              | <b></b>      |
| R/W                                    |              |
| Address                                |              |
| Data                                   | <b>—</b>     |
| Attn desel                             |              |
| 范围选择                                   |              |
| <b>光光</b> 选择要分标                        | 所的范围         |
| ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● | 结束位置         |
| 缓冲区                                    | 开头 ▼ 緩冲区结尾 ▼ |
|                                        |              |
|                                        | 缺省 确定 取消     |

CLK: 数据传输之 Clock。

Data: 数据传输之 Data。



## 分析结果

| Time/Div: 32 u<br>Acquired: 11:36                                                                                                                                                                | 1.647                                                                                                                                                                               | S                                                                                 | 1.647 S                                                              | 1.64                                                           | 47 S                                                                             | 1.647 S                                                                         | 1.                                                                         | 647 S                                        | 1.648 | IS<br>  | 1.648 \$ | 1.6488      | <u> </u> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------|-------|---------|----------|-------------|----------|
|                                                                                                                                                                                                  | ATTN                                                                                                                                                                                | DESEL                                                                             |                                                                      | ADDR:4                                                         | 40 D.A                                                                           | ATA:00                                                                          | DATA:00                                                                    | DAT                                          | A CO  | DATA:00 |          | DESEL       |          |
| SMI 1 Clk                                                                                                                                                                                        | 17.1u                                                                                                                                                                               | 71.775u                                                                           |                                                                      |                                                                |                                                                                  |                                                                                 | 15.8u                                                                      |                                              |       |         |          | 109.525u    |          |
| 0 Data                                                                                                                                                                                           | 34.265u                                                                                                                                                                             | 70.4                                                                              |                                                                      |                                                                |                                                                                  | 117.595u                                                                        |                                                                            |                                              |       | 88,625u |          |             |          |
|                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                                                   |                                                                      |                                                                |                                                                                  |                                                                                 |                                                                            |                                              |       |         |          |             |          |
| Label Channel                                                                                                                                                                                    |                                                                                                                                                                                     |                                                                                   |                                                                      |                                                                |                                                                                  |                                                                                 |                                                                            | -                                            |       |         |          |             |          |
| CH-00 CH-00 CH-00 CH-00                                                                                                                                                                          |                                                                                                                                                                                     | SMI(SM                                                                            | AI)                                                                  | ·                                                              | •                                                                                |                                                                                 |                                                                            |                                              |       |         |          |             |          |
| Timestamp                                                                                                                                                                                        | Sel/Desel                                                                                                                                                                           | R/W                                                                               | Addr                                                                 | Data0                                                          | Datal                                                                            | Data2                                                                           | Data3                                                                      | Data4                                        | Data5 | Data6   | Data7    | Information | •        |
| 1 6460001 9                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                   |                                                                      |                                                                |                                                                                  |                                                                                 |                                                                            |                                              |       |         |          |             |          |
| 1.0409901 5                                                                                                                                                                                      | Sel                                                                                                                                                                                 | Write                                                                             | 80                                                                   | 00                                                             | 00                                                                               | 00                                                                              |                                                                            |                                              |       |         |          |             |          |
| 1.64723977 S                                                                                                                                                                                     | Sel<br>Desel                                                                                                                                                                        | Write<br>Read                                                                     | 80<br>40                                                             | 00<br>00                                                       | 00<br>00                                                                         | 00<br>C0                                                                        | 00                                                                         | 00                                           |       |         |          |             |          |
| 1.6475705 S                                                                                                                                                                                      | <mark>Sel</mark><br>Desel<br>Desel                                                                                                                                                  | Write<br>Read<br>Read                                                             | 80<br>40<br>40                                                       | 00<br>00<br>40                                                 | 00<br>00<br>00                                                                   | 00<br>C0<br>C0                                                                  | 00<br>00                                                                   | 00<br>00                                     |       |         |          |             |          |
| 1.6479301 S<br>1.64723977 S<br>1.647938985 S                                                                                                                                                     | Sel<br>Desel<br>Desel<br>Desel                                                                                                                                                      | Write<br>Read<br>Read<br>Read                                                     | 80<br>40<br>40<br>40                                                 | 00<br>00<br>40<br>80                                           | 00<br>00<br>00<br>00                                                             | 00<br>C0<br>C0<br>C0                                                            | 00<br>00<br>00                                                             | 00<br>00<br>00                               |       |         |          |             |          |
| 1.64723977 S<br>1.64723977 S<br>1.6475705 S<br>1.647938985 S<br>1.64826971 S                                                                                                                     | Sel<br>Desel<br>Desel<br>Desel<br>Desel                                                                                                                                             | Write<br>Read<br>Read<br>Read<br>Read                                             | 80<br>40<br>40<br>40<br>40                                           | 00<br>00<br>40<br>80<br>C0                                     | 00<br>00<br>00<br>00<br>00                                                       | 00<br>C0<br>C0<br>C0<br>C0                                                      | 00<br>00<br>00<br>00                                                       | 00<br>00<br>00<br>00                         |       |         |          |             |          |
| 1.6469901 S<br>1.64723977 S<br>1.6475705 S<br>1.647938985 S<br>1.64826971 S<br>1.648600435 S<br>1.648600435 S                                                                                    | Sel<br>Desel<br>Desel<br>Desel<br>Desel<br>Desel                                                                                                                                    | Write<br>Read<br>Read<br>Read<br>Read<br>Read                                     | 80<br>40<br>40<br>40<br>40<br>41<br>41                               | 00<br>00<br>40<br>80<br>C0<br>08<br>48                         | 00<br>00<br>00<br>00<br>00<br>00                                                 | 00<br>C0<br>C0<br>C0<br>C0<br>C0                                                | 00<br>00<br>00<br>00<br>00                                                 | 00<br>00<br>00<br>00<br>00<br>00             |       |         |          |             |          |
| 1.6409901 5<br>1.64723977 5<br>1.6475705 5<br>1.647938985 5<br>1.64826971 5<br>1.648600435 5<br>1.64893116 5<br>1.650633285 5                                                                    | Sel<br>Desel<br>Desel<br>Desel<br>Desel<br>Desel<br>Sel                                                                                                                             | Write<br>Read<br>Read<br>Read<br>Read<br>Read<br>Read                             | 80<br>40<br>40<br>40<br>40<br>41<br>41<br>41                         | 00<br>00<br>40<br>80<br>C0<br>08<br>48<br>00                   | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                               | 00<br>C0<br>C0<br>C0<br>C0<br>00<br>C0<br>C0                                    | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                               | 00<br>00<br>00<br>00<br>00<br>00<br>00       |       |         |          |             |          |
| 1.6409901 3<br>1.64723977 S<br>1.647938985 S<br>1.64826971 S<br>1.648600435 S<br>1.64893116 S<br>1.650633285 S<br>1.6506401 S                                                                    | Sel<br>Desel<br>Desel<br>Desel<br>Desel<br>Desel<br>Sel<br>Sel                                                                                                                      | Write<br>Read<br>Read<br>Read<br>Read<br>Read<br>Read<br>Write<br>Write           | 80<br>40<br>40<br>40<br>40<br>41<br>41<br>41<br>06<br>07             | 00<br>00<br>40<br>80<br>C0<br>08<br>48<br>00                   | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>03<br>40                         | 00<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0                  | 00<br>00<br>00<br>00<br>00<br>00<br>62<br>00                               | 00<br>00<br>00<br>00<br>00<br>00<br>06       |       |         |          |             |          |
| 1.6405901 3<br>1.64723977 3<br>1.6475705 3<br>1.647938985 3<br>1.64826971 3<br>1.648600435 3<br>1.64893116 3<br>1.650633285 3<br>1.65096401 3<br>1.651294735 3                                   | Sel<br>Desel<br>Desel<br>Desel<br>Desel<br>Desel<br>Sel<br>Sel                                                                                                                      | Write<br>Read<br>Read<br>Read<br>Read<br>Read<br>Write<br>Write<br>Write          | 80<br>40<br>40<br>40<br>40<br>41<br>41<br>41<br>06<br>07<br>08       | 00<br>40<br>80<br>08<br>48<br>08<br>48<br>00<br>00<br>7E       | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>03<br>40                         | 00<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C | 00<br>00<br>00<br>00<br>00<br>00<br>62<br>00<br>62<br>00                   | 00<br>00<br>00<br>00<br>00<br>00<br>06<br>02 |       |         |          |             |          |
| 1.6403901 3<br>1.64723977 S<br>1.6475705 S<br>1.647938985 S<br>1.64826971 S<br>1.648600435 S<br>1.64893116 S<br>1.650633285 S<br>1.65096401 S<br>1.651294735 S<br>1.651294735 S                  | Sel<br>Desel<br>Desel<br>Desel<br>Desel<br>Desel<br>Sel<br>Sel<br>Sel<br>Sel                                                                                                        | Write<br>Read<br>Read<br>Read<br>Read<br>Read<br>Write<br>Write<br>Write<br>Write | 80<br>40<br>40<br>40<br>40<br>41<br>41<br>41<br>06<br>07<br>08<br>09 | 00<br>40<br>80<br>08<br>48<br>08<br>48<br>00<br>00<br>7E<br>00 | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>03<br>40<br>00<br>43                   | 00<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C | 00<br>00<br>00<br>00<br>00<br>00<br>62<br>00<br>62<br>00<br>62<br>00       | 00<br>00<br>00<br>00<br>00<br>00<br>06<br>02 |       |         |          |             |          |
| 1.6403901 3<br>1.64723977 S<br>1.6475705 S<br>1.647938985 S<br>1.64826971 S<br>1.648600435 S<br>1.64893116 S<br>1.650633285 S<br>1.65096401 S<br>1.651294735 S<br>1.651294735 S<br>1.651993945 S | Sel           Desel           Desel           Desel           Desel           Sel           Sel           Sel           Sel           Sel           Sel           Sel           Sel | Write<br>Read<br>Read<br>Read<br>Read<br>Read<br>Write<br>Write<br>Write<br>Write | 80<br>40<br>40<br>40<br>41<br>41<br>06<br>07<br>08<br>09<br>0A       | 00<br>40<br>80<br>08<br>48<br>00<br>90<br>7E<br>00<br>7E       | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>03<br>40<br>00<br>43<br>00             | 00<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C0<br>C | 00<br>00<br>00<br>00<br>00<br>00<br>62<br>00<br>62<br>00<br>62<br>00<br>82 | 00<br>00<br>00<br>00<br>00<br>06<br>02       |       |         |          |             |          |
| 1.6405901 3<br>1.64723977 3<br>1.6475705 3<br>1.647938985 S<br>1.64826971 S<br>1.648600435 S<br>1.648600435 S<br>1.65096401 S<br>1.65096401 S<br>1.651294735 S<br>1.65166322 S<br>1.651993945 S  | Sel           Desel           Desel           Desel           Desel           Sel           Sel           Sel           Sel           Sel           Sel           Sel           Sel | Write<br>Read<br>Read<br>Read<br>Read<br>Read<br>Write<br>Write<br>Write<br>Write | 80<br>40<br>40<br>40<br>41<br>41<br>06<br>07<br>08<br>09<br>0A       | 00<br>00<br>40<br>80<br>08<br>48<br>00<br>00<br>7E<br>00<br>7E | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>40<br>40<br>00<br>43<br>00 | 00<br>C0<br>C0<br>C0<br>C0<br>00<br>C0<br>09<br>C0<br>09<br>00<br>00<br>04      | 00<br>00<br>00<br>00<br>00<br>62<br>00<br>62<br>00<br>62<br>00<br>82       | 00<br>00<br>00<br>00<br>00<br>06<br>02       |       |         |          |             |          |



SPI

SPI 串行周边接口(Serial Peripheral Interface Bus, SPI),类似 I<sup>2</sup>C,是一种4线同步串行数据协议,适用于可携式装置平台系统。串行周边接口一般是4线,有时亦可为3线或2线。

参数设置

| SPI 参数设置                                  | ×                          |
|-------------------------------------------|----------------------------|
| 参数设置                                      |                            |
| ──────────────────────                    | _3 线-SPI                   |
| III 3 线-SPI ▼                             | Chip Select 通道 (CS) CH 0 🕴 |
| ── 使用外部时钟                                 | 数据通道 (SDA) CH 2            |
| 时钟通道 (SCK) CH 1 🔶                         | Chip Select 触发沿 数据触发沿      |
|                                           | Active Low Rising          |
|                                           |                            |
| 位顺序 MSB First 🗨                           | 写入长度 8 空闲 2                |
| 字长 8 bit (4~40)                           |                            |
| Data valid from SCK                       | (Bits)                     |
| 报告初窗                                      |                            |
| ✓ 在报告视窗显示 Idle 状态                         |                            |
|                                           |                            |
| 显示数据方式                                    |                            |
| 波形颜色 ———————————————————————————————————— |                            |
| □ SDI/数据/写入通道                             |                            |
|                                           |                            |
|                                           | <b>`</b>                   |
| 分析范围                                      |                            |
| <b>近</b> 选择要分析的范围                         |                            |
| 起始位置 结                                    | 東位置                        |
| 缓冲区开头 🚽 繆                                 | 斜区结尾 ▼                     |
|                                           |                            |
|                                           | 一 耕省                       |
|                                           |                            |

类别:选择 SPI 类别,缺省为 3 线-SPI,收录有:

4 线-SPI→使用 SCK, CS, SDI 或 SDO: 您可以分别分别设置 CS、SDI、SDO 之 触发缘。CS 缺省为 Active Low、SDI/SDO 缺省为 Active High。由于 SDI 与 SDO



数据会同时出现。您可以在显示数据通道里面选择最后显示之数据是 SDI only、

| 4 线-SPI             |            |
|---------------------|------------|
| Chip Select 通道 (CS) | СНО        |
| 数据通道 (SDI)          | CH 2 +     |
| 数据通道 (SDO)          | СН 3 •     |
| Chip Select 触发沿     | Active Low |
| SDI 触发沿             | Rising 🗸   |
| SDO 触发沿             | Rising 🗨   |
| 显示数据通道              | Both 💌     |
| /cs<br>sck<br>sdi 2 |            |

SDO only 或 Both 两者都显示,缺省为 Both。

3线-SPI→使用 SCK, CS, SDA:在3线使用 Slave select 模式下,只需要1个数据通道(可为 SDI or SDO)。您可以分别分别设置 CS、Data 之触发缘。CS 缺省为 Active Low。Data 缺省为 Active High。一般的应用,数据通道是单线单向的方式传输数据。

| 3 线-SPI                    |
|----------------------------|
| Chip Select 通道 (CS) CH 0 🔹 |
| 数据通道 (SDA) CH 2 -          |
| Chip Select 触发沿数据触发沿       |
| Active Low 💌 Rising 💌      |
| □ SDI(写入)-空闲-SDO(读取)       |
| 写入长度 8 空闲 2                |
| 读取长度 8 (Bits)              |
| /CS                        |

我们也提供了单线双向传输模式。如下图。

| ┌✔ SDI(写入) | -空闲-SDO( | 读取) ———— |
|------------|----------|----------|
| 写入长度       | 8        | 空闲 2     |
| 读取长度       | 8        | (Bits)   |
| /cs        |          |          |
| scк —      |          |          |
| SDA X Wri  |          | Read     |

您只需将「SDI(写入)-空闲-SDO(读取)」打勾,就可以设置双向传输之 bit 数。



我们以 Master 为观点,写入长度即为 Master 把数据放到数据通道的 bit 数,最小为 1。空闲 Slave 处理的 bit 数,最小为 0。然后再依读取长度来收集数据,最小为 1。此 3 个参数设置值,最大为 65535。

3 线-SPI(不使用 Slave select) →使用 SCK, SDI, SDO: 因为没有使用 CS,所以必 须设置 SCK 之 Idle time,作为 Frame 之分隔时间。在 3 线不使用 Slave select 模 式下,您需设置 SDI/SDO 所在的通道。及其触发缘,缺省为 Active High。并设 置好作为 Frame 分隔之空闲 Clock Idle 的时间即可。由于 SDI 与 SDO 数据会同 时出现。您可以在显示数据通道里面选择最后显示之数据是 SDI only、SDO only、

| 或 Both | 两者都显示 | , | 缺省为 | Both $\circ$ |
|--------|-------|---|-----|--------------|
|--------|-------|---|-----|--------------|

| ┌ <sup>3</sup> 线-SPI(不使用 Chip | o Select) |
|-------------------------------|-----------|
| 数据通道 (SDI)                    | СН 1      |
| 数据通道 (SDO)                    | CH 2 +    |
| SDI 触发沿                       | Rising 🗨  |
| SDO 触发沿                       | Rising 🗨  |
| Frame 分隔时间                    | 300 ns    |
| 显示数据通道                        | Both      |
|                               |           |

2 线-SPI(不使用 Slave select) →使用 SCK, SDA: 因为没有使用 CS,所以必须设置 SCK 之 Idle time 作为 Frame 之分隔时间。在2线不使用 Slave select 模式下, 您需设置数据所在的通道。及其触发缘,缺省为 Active High。并设置好作为 Frame 分隔之空闲 Clock Idle 的时间即可。一般的应用,数据通道是单线单向的方式传输数据。



| 2 线-SPI(不使用 Chip Select)            |
|-------------------------------------|
| 数据通道 (SDA) CH 2 ↓<br>数据触发沿 Rising ▼ |
| ┌── SDI(写入)-空闲-SDO(读取) ─────        |
| 写入长度 8 空闲 2                         |
| 读取长度 8 (Bits)                       |
| Frame 分隔时间 300 ns                   |
|                                     |

在不使用 Slave select,且 Frame 之分隔时间不为 0 时,其应用范例如下。信号 只有 CLK, DATA. Frame 分隔时间为 6 us,数据触发沿在 Rising。可以看出,在 Clock 暂停间隔超过 6 us 时,就会被识别为 Idle。

| SPI # 2.0       X1D       00       Xde       AA       Ide       04       Ide       00       Ide       Ide       Ide       Ide <td>)</td> | ) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| ▼ 在报告视窗显示 Idle 状态         显示数据方式       8 栏         波形颜色         ③ SDI/数据/写入 通道         ⑤ SDI/数据/写入 通道         ⑤ SDI/数据/写入 通道         ⑦ SDI/数据/写入 通道         ③ ③         ⑦ SDI/数据/写入 通道         ③ ③         ③ ③         ③ SDI/数据/写入 通道         ③ ③         ③ ③         ③ ③         ③ ○         ③ ○         ③ ○         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●                                                                                                                                                                                                                                                                                                                                                              |   |



在不使用 Slave select,且 Frame 之分隔时间为 0 时,可成为另一种连续数据的 分析,如下图所示。信号只有 CLK, DATA。而 Frame 分隔时间为 0,数据触发 沿在 Falling。

| CLK     0     ↓       DATA     1     X       SPI-2 wire     1.0     X↓b                                                                                                                                                                                                                                                                 | ПОЛИТИИ ПОЛИТИИ<br>Вагв                                                                                                                             |     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| SPI 参数设置         类别         2 统-SPI(不使用 Chip Select)         1使用外部时钟         时钟通道 (SCK)         CH 1         文长         16 bit         学长         16 bit         文化         双音/小台         文子长         16 bit         文化         公式         中         文长         16 bit         文         S/R Clk         报告视窗显示 Idle 状态         显示数据方式< | 2 线-SPI(不使用 Chip Select)<br>数据通道 (SDA) CH 1<br>数据触发沿 Falling ▼<br>SDI(写入)-空闲-SDO(读取)<br>写入长度 8 空闲<br>读取长度 8 (Bits)<br>Frame 分隔时间 0<br>SCK ↓ ↓ ↓ ↓ ↓ |     |  |  |
| <ul> <li>波形颜色</li> <li>● SDI/数据/写入 通道</li> <li>● SDI/读取 通道</li> <li>● 分析范围</li> <li>● 选择要分析的范围</li> <li>● 边站位置</li> <li>● 缓冲区开头</li> </ul>                                                                                                                                                                                              | 」」 書東位置 爰冲区结尾 ↓ 供省 确                                                                                                                                | 定取消 |  |  |

我们也提供了单线双向传输模式。如下图。

| <ul> <li>✓ SDI(写入)·</li> <li>写入长度</li> <li>读取长度</li> </ul> | 空闲-SDO(ì<br>8<br>8 | 卖取)<br>空闲<br>(Bits) | 2    |           |
|------------------------------------------------------------|--------------------|---------------------|------|-----------|
| Frame 分隔时                                                  | 间 30               | 0                   |      | ns        |
| SCK                                                        |                    |                     | Read | -1:<br>X: |

您只需将「SDI(写入)-空闲-SDO(读取)」打勾,就可以设置双向传输之 bit 数。 我们以 Master 为观点,写入长度即为 Master 把数据放到数据通道的 bit 数,最小 为1。空闲 Slave 处理的 bit 数,最小可为0。然后再依读取长度来收集数据,最 小为1。。此3个参数设置值,最大为65535。

使用外部 Clock: 若不使用外部 Clock,则您需选择 SCK 所在的通道位置。若使



用外部 Clock 的设置被打勾时,表示您将使用 SCK 作为逻辑分析仪的 Sample rate clock,这样 SCK 必须接在逻辑分析仪所指定的通道上。

| ▶ 使用外部时钟   |      |        |
|------------|------|--------|
| 时钟通道 (SCK) | CH 0 | *<br>* |
| 外部时钟通道在 CH | 135  | 1      |

位顺序:您可设置解析 SPI 数据时,为 MSB first or LSB first,缺省为 LSB first。 字长:您可设置每个 Data word size,以 bit 为单位,SPI 解析时,将会以此数值 作为收集每个 Data word 的位数。最小值为4,最大值为40。缺省为8。

在报告显示 Idle 状态: SPI 在应用时,可能每次抓取数据的间隔都会有 Idle 的状态出现,为了方便数据检视。您可以设置报告窗口不显示 Idle 状态。缺省为会显示 Idle 状态。

显示数据方式:可设置连续之 SPI 数据,是以 8 栏或 16 栏方式显示于报告窗口。 缺省为 16 栏,您可以在报告窗口最右侧看到 ASCII 编码的结果。

Data Valid from SCK: 在某些使用 SPI 传输的装置,其数据输出后到数据有效 数据会有一段延迟时间,此时间不会在 Clock 的 Edges 上。因此,配合此类装 置,您可以设置 Data valid from SCK 来延迟这个时间。可输入延迟时间以采样 率为单位 Range 是 0-3。缺省就是不延迟。若设置为 1,当采样率是 200MHz, 则实际延迟时间就是 5 ns。



## 分析结果

| Time/Div: 250 📮              |                                                                                                             |            |         |              |         |            |        |        |         |                          |               |
|------------------------------|-------------------------------------------------------------------------------------------------------------|------------|---------|--------------|---------|------------|--------|--------|---------|--------------------------|---------------|
| Acquired: 08:0               | 2.557 ms 2.557 r                                                                                            | ns<br>I.I. | 2.558 m | s<br>1 . I . | 2.558 r | ns<br>I.I. | 2.559  | ms<br> | 2.559 m | ns 2.559 ms              | 2.56 ms       |
| spi 1 cs                     | Idle         0B         00         B0         6           185n         000000000000000000000000000000000000 | 7 00       |         |              |         |            | 00<br> |        | oo 00   |                          |               |
| 0 SDI                        | 150n                                                                                                        |            |         |              | 2,      | 928u       |        |        |         |                          | 152.5n        |
| 2 SDO                        | 172.5n                                                                                                      |            |         |              |         |            |        | 2.47u  |         |                          |               |
|                              |                                                                                                             |            |         |              |         |            |        |        |         |                          | •             |
| Label Channel                |                                                                                                             |            |         |              |         |            |        |        |         |                          |               |
| (CH-00) CH-00<br>CH-01 CH-00 | RR BUS (SPI(SPI)                                                                                            |            | •       |              |         |            |        |        |         |                          |               |
| Timestamp                    | Status(8 bits data)                                                                                         | DO         | Dl      | D2           | DЗ      | D4         | D5     | D6     | D7      | ASCII(D0-D7)             | Informati 🔺   |
| 2.5566025 ms                 | Unknown                                                                                                     |            |         |              |         |            |        |        |         |                          |               |
| 2.5567225 ms                 | Idle                                                                                                        |            |         |              |         |            |        |        |         |                          | Duration:     |
| 2.5569075 ms                 | Data                                                                                                        | OB         | 00      | B0           | 67      | 00         | 00     | 00     | 00      | °g                       |               |
| 2.5582925 ms                 | Data                                                                                                        | 00         | 00      | 00           | 00      | 00         | 00     | 00     | 00      |                          |               |
| 2.5596825 ms                 | Unknown                                                                                                     |            |         |              |         |            |        |        |         |                          |               |
| 2.5598 ms                    | Idle                                                                                                        |            |         |              |         |            |        |        |         |                          | Duration:     |
| 2.559985 ms                  | Data                                                                                                        | OB         | 00      | BO           | 74      | 00         | 00     | 00     | 00      | °t                       |               |
| 2.561375 ms                  | Data                                                                                                        | 00         | 00      | 00           | 00      | 00         | 00     | 00     | 00      | •••••                    |               |
| 2.5627625 ms                 | Data                                                                                                        | 00         | 00      | 00           | 00      | 00         | 00     | 00     | 00      |                          |               |
| 2.5641525 ms                 | Data                                                                                                        | 00         | 00      | 00           | 00      | 00         | 00     |        |         |                          |               |
| 2.5651925 ms                 | Unknown                                                                                                     |            |         |              |         |            |        |        |         |                          |               |
| 2.5653125 ms                 | Idle                                                                                                        |            |         |              |         |            |        |        |         |                          | Duration: 🗸   |
| •                            |                                                                                                             |            |         |              |         |            |        |        |         |                          |               |
|                              |                                                                                                             |            |         |              |         | A          | 63     | 31002  | B       | 1855771 <mark>A</mark> B | 2486773 🕒 🔟 🎹 |

使用 3 线-SPI, Internal clock 模式

## 使用 3 线-SPI, External clock 模式

| Time/Div: 30 ns 평             |                     |      |            |         |       |                |            |      |       |                       | 9            |
|-------------------------------|---------------------|------|------------|---------|-------|----------------|------------|------|-------|-----------------------|--------------|
| Acquired: 11:01: <sub>1</sub> | 1.792 ms 1.793      | 2 ms | 1.792      | ms<br>I | 1.792 | lms<br>- I - I | 1.792      | 2 ms | 1.792 | 2 ms 1.792 ms         | 1.792 ms     |
|                               | B8 5D               | 58   | 55         |         | 61    |                | 17         | FC   |       | 43 94                 | B5 4A        |
| SPI 0 CS                      | ]                   |      |            |         |       |                |            |      |       |                       |              |
| 2 SDA                         | 15n 20n 15n         | 201  |            |         | 20n   | 15n            |            | 45n  | 15n   | 20n 15n               |              |
|                               |                     |      |            |         |       |                |            |      |       |                       | Ţ            |
| Label Channel                 | •                   |      |            |         |       |                |            |      |       |                       |              |
| CH-00 CH-00 CH-00 CH-00 CH-00 | SPI(SPI)            |      | -          | [       |       |                |            |      |       |                       |              |
| Timestamp                     | Status(8 bits data) | DO   | Dl         | D2      | DЗ    | D4             | D5         | D6   | D7    | ASCII(D0-D7)          | Informati 🔺  |
| 1.79202 ms                    | Data                | B8   | 5D         | 58      | 55    | 61             | 17         | FC   | 43    | ,]XUa.üC              |              |
| 1.79234 ms                    | Data                | 94   | B5         | 4A      | 4E    | 4D             | 80         | 1A   | Α7    | ″µJNM€.§              |              |
| 1.79266 ms                    | Data                | E9   | 31         | 74      | 45    | 19             | C7         | F8   | 38    | éltE.Çø8              |              |
| 1.79298 ms                    | Data                | A9   | AA         | 44      | 82    | BE             | 12         | F5   | 90    | ©²D,¾.õœ              |              |
| 1.7933 ms                     | Data                | 34   | F7         | ЗF      | D5    | 2D             | 75         | 97   | 49    | 4÷?Õ-u–I              |              |
| 1.79362 ms                    | Data                | 17   | 44         | 00      | Al    | 27             | 61         | F4   | 50    | .D.;'aôP              |              |
| 1.79394 ms                    | Data                | 8D   | F5         | 7E      | 7A    | 70             | 88         | 6A   | 47    | Dõ∼zp^jG              |              |
| 1.79426 ms                    | Data                | DE   | <b>A</b> 2 | 32      | 4C    | D5             | DE         | 10   | 38    | Þ¢2LÖÞ.8              |              |
| 1.79458 ms                    | Data                | 06   | 98         | 70      | 15    | 75             | 2 <b>A</b> | CC   | A3    | .~ .u*İ£              |              |
| 1.7949 ms                     | Data                | A8   | 74         | E3      | 35    | 66             | 9E         | 82   | 91    | ∵tã5fž,`              |              |
| 1.79522 ms                    | Data                | DE   | C6         | 1E      | 40    | 24             | OF         | F7   | 39    | ÞÆ0\$.÷9              |              |
| 1.79554 ms                    | Data                | 4F   | C9         | F5      | 70    | CD             | 29         | E3   | 2E    | OEõpI)ã.              | -            |
|                               |                     |      |            |         |       |                |            |      |       |                       |              |
|                               |                     |      |            |         |       | A              | 10         | 2248 | B     | 484873 <mark>B</mark> | 587121 🕒 🔟 🇰 |



# **SPI NAND**

SPI NAND Flash Memory 系列,使用 SPI/QPI 传输协议作为其数据传输之通讯方式。 SPI NAND 总线分析提供用户检视讯号时,可同时查看命令及输入输出总线讯息,节省用户使用 SPI 总线分析波形的时间。

#### 参数设定

| SPI NAND 参数设定                                   |
|-------------------------------------------------|
| 通道设定                                            |
| CS# Ch 0 ÷ SCK Ch 1 ÷ Winbond ▼                 |
| SI/S00 Ch 2 - SO/S01 Ch 3 - W25N01GV            |
| WP/SO2 Ch 4 + HOLD#/SO3 Ch 5 +                  |
| Start up reading mode Continuous Read 💌         |
| Command deselect time 50ns                      |
| Clock LOW to output valid 15ns                  |
| 波形颜色                                            |
| OpCode Dummy                                    |
| Address Data In                                 |
| Data Out                                        |
| 分析范围                                            |
| 选择要分析的范围 3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3. |
| 起始位置 结束位置                                       |
| 缓冲区开头    缓冲区结尾                                  |
| 缺省 确定 取消                                        |

CS#: 讯号传输之 Chip select。

SCLK:讯号传输之 Clock。

SIO0-SIO3: 数据传输之 Data 脚位。

Start up reading mode: 可设定初始资料读取模式



Command deselect time: 可调整分析判断 CS#无效所需要的维持时间。

Clock LOW to output valid: 可调整分析判断实际数据的位置。

## 分析结果

| miles a miles |                | 1     |             |             |         |        |           |       |          |         |         |          |    | -    |
|---------------|----------------|-------|-------------|-------------|---------|--------|-----------|-------|----------|---------|---------|----------|----|------|
| lime/Div:     | 500 ns         | •     |             |             |         |        |           |       |          |         |         |          |    | ۳.   |
| Acquired:     | 10:08:2        |       | -26.4974 ms | -26.4966 ms | -26.4   | 958 ms | -26.495 m | s -26 | .4942 ms | -26.493 | 4 ms -2 | 6.4926 m | 5  |      |
| BUS 1         | 0,1,2,3,:      |       | (6B)Read x4 |             | 080     | 90     |           |       | 00       | FF      |         |          |    |      |
| CS            | ο              |       |             |             |         |        |           |       |          |         |         |          |    |      |
| CLK           | 1              |       | ՄՈՈՈ        | ուսու       |         |        |           |       |          |         | 580 ns  | UUU      |    |      |
| SI            | 2              |       |             | 520 ns      |         |        | 2.58 us   |       |          | 94      | 0 ns    |          |    |      |
| SO            | з              |       |             |             |         |        |           |       |          |         |         |          |    |      |
|               |                |       |             |             |         |        |           |       |          |         |         |          |    | •    |
| Label         | Channe         | •     |             |             |         |        |           |       |          |         |         |          |    | _    |
| ⊙/Щ сн.с      | CH-00<br>CH-00 | лл    | Bus         | Bus 1(SPI   | NAND)   | •      | [         |       |          |         |         |          |    |      |
| Sample        |                | Op Co | de          |             | Ac      | ldress | DØ        | D1    | D2       | D3      | D4      | D5       | D6 |      |
| -1341818      |                | PAGE  | READ(13)    |             | 00      | 0FC80  |           |       |          |         |         |          |    |      |
| -1341448      |                | GET F | EATURE (ØF) |             | C       | )      |           |       |          |         |         |          |    |      |
| -1324898      |                | READ  | FROM CACHE  | x4(6B)      | 01      | 300    | FF        |       |          |         |         |          |    |      |
| -1324636      |                | PAGE  | READ(13)    |             | 00      | 0FCC0  |           |       |          |         |         |          |    |      |
| -1324266      |                | GET F | EATURE(0F)  |             | C       | )      |           |       |          |         |         |          |    |      |
| -1307720      |                | READ  | FROM CACHE  | x4(6B)      | 18      | 300    | FF        |       |          |         |         |          |    |      |
| -1307458      |                | PAGE  | READ(13)    |             | 00      | 9FD00  |           |       |          |         |         |          |    |      |
| -1307102      |                | GET F | EATURE(0F)  |             | C       | )      |           |       |          |         |         |          |    |      |
| -1290552      |                | READ  | FROM CACHE  | x4(6B)      | 08      | 300    | FF        |       |          |         |         |          |    |      |
| -1290290      |                | PAGE  | READ(13)    |             | 00      | 0FD40  |           |       |          |         |         |          |    | •    |
| •             |                |       |             |             |         |        |           |       |          |         |         |          | •  |      |
|               |                |       | A           | 203.22807   | 4739 Ha | B      | 203.222   | 29267 | 3 Hz 🔒   | 7.1     | 4285714 | 3 MHz    | G  | 1111 |

| Time/Div:                                                                                                     | 500 ns 🤤            |                                                                      |                                                          |                                                    |                                                          |                                                          |                                                          |                                                    |                                                          |                                                          |                                       |              |   |
|---------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------|--------------|---|
| Acquired:                                                                                                     | 10:08:2 106.02124   | ms 106.022                                                           | 04 ms                                                    | 106.                                               | 02284                                                    | ms 1                                                     | 106.02                                                   | 2364 n                                             | ns 1                                                     | 06.024                                                   | 44 ms 106.02524 ms                    | 106.02604 ms |   |
| BUS 1                                                                                                         | D,1,2,3,            |                                                                      |                                                          |                                                    |                                                          |                                                          |                                                          |                                                    | 100                                                      | 0                                                        | EØ                                    | 00 ØE FE     |   |
| CS                                                                                                            | 0                   |                                                                      |                                                          |                                                    |                                                          |                                                          |                                                          |                                                    |                                                          |                                                          |                                       |              |   |
| CLK                                                                                                           |                     |                                                                      | ЛЛ                                                       | UU                                                 | Ш                                                        | ЛЛ                                                       | ЛЛ                                                       | ΠU                                                 | UU                                                       | Ш                                                        |                                       |              | 1 |
| SI                                                                                                            | 2 660 ns            | 660 ns                                                               |                                                          |                                                    | 520                                                      | ns                                                       |                                                          |                                                    |                                                          |                                                          | 2.64 us                               |              |   |
| SO                                                                                                            | 3                   |                                                                      |                                                          | 4                                                  | .76 u                                                    | 15                                                       |                                                          |                                                    | -                                                        |                                                          | 660                                   | ns 660 ns    | 1 |
|                                                                                                               |                     |                                                                      |                                                          |                                                    |                                                          |                                                          |                                                          |                                                    |                                                          |                                                          |                                       |              | - |
| Label                                                                                                         | Channel             |                                                                      |                                                          |                                                    |                                                          |                                                          |                                                          |                                                    |                                                          |                                                          |                                       | •            |   |
|                                                                                                               |                     | Bus 1                                                                | SPI N                                                    | AND)                                               |                                                          | •                                                        |                                                          |                                                    |                                                          |                                                          |                                       |              |   |
| Sample                                                                                                        | Op Code             | Address                                                              | DØ                                                       | D1                                                 | D2                                                       | D3                                                       | D4                                                       | D5                                                 | D6                                                       | D7                                                       | ASCII                                 | Memo         | • |
| 5301096                                                                                                       | PROGRAM LOAD x4(32) | 1000                                                                 | EO                                                       |                                                    |                                                          |                                                          |                                                          | 00                                                 |                                                          |                                                          |                                       |              | - |
| 5301394                                                                                                       |                     | 1000                                                                 | EØ                                                       | 00                                                 | ØE                                                       | FE                                                       | F1                                                       | 00                                                 | FE                                                       | FF                                                       |                                       |              |   |
|                                                                                                               |                     | 1008                                                                 | F1                                                       | 00<br>00                                           | 0E<br>1F                                                 | FE<br>01                                                 | F1<br>FF                                                 | 10                                                 | ØF                                                       | FF<br>EØ                                                 |                                       |              |   |
| 5301528                                                                                                       |                     | 1008<br>1010                                                         | F1<br>F0                                                 | 00<br>00<br>E1                                     | 0E<br>1F<br>0E                                           | FE<br>01<br>EE                                           | F1<br>FF<br>EF                                           | 10<br>1F                                           | 0F<br>11                                                 | FF<br>E0<br>FF                                           | · · · · · · · · · · · · · · · · · · · |              |   |
| 5301528<br>5301661                                                                                            |                     | 1008<br>1010<br>1018                                                 | F1<br>F0<br>F1                                           | 00<br>00<br>E1<br>F1                               | 0E<br>1F<br>0E<br>E0                                     | FE<br>01<br>EE<br>0F                                     | F1<br>FF<br>EF<br>1E                                     | 10<br>1F<br>11                                     | 0F<br>11<br>00                                           | FF<br>E0<br>FF<br>11                                     | · · · · · · · · · · · · · · · · · · · |              |   |
| 5301528<br>5301661<br>5301794                                                                                 |                     | 1000<br>1008<br>1010<br>1018<br>1020                                 | F1<br>F0<br>F1<br>1F                                     | 00<br>00<br>E1<br>F1<br>00                         | 0E<br>1F<br>0E<br>E0<br>00                               | FE<br>01<br>EE<br>0F<br>0E                               | F1<br>FF<br>EF<br>1E<br>FF                               | 10<br>1F<br>11<br>0E                               | 0F<br>11<br>00<br>FE                                     | FF<br>E0<br>FF<br>11<br>0E                               | ······                                |              |   |
| 5301528<br>5301661<br>5301794<br>5301927                                                                      |                     | 1008<br>1010<br>1018<br>1020<br>1028                                 | F1<br>F0<br>F1<br>1F<br>1E                               | 00<br>E1<br>F1<br>00<br>10                         | 0E<br>1F<br>0E<br>E0<br>00<br>1F                         | FE<br>01<br>EE<br>0F<br>0E<br>F0                         | F1<br>FF<br>EF<br>1E<br>FF<br>11                         | 10<br>1F<br>11<br>0E<br>0E                         | PE<br>0F<br>11<br>00<br>FE<br>EF                         | FF<br>E0<br>FF<br>11<br>0E<br>0F                         | · · · · · · · · · · · · · · · · · · · |              |   |
| 5301528<br>5301661<br>5301794<br>5301927<br>5302060<br>5302194                                                |                     | 1008<br>1010<br>1018<br>1020<br>1028<br>1030                         | F1<br>F0<br>F1<br>1F<br>1E<br>EE                         | 00<br>E1<br>F1<br>00<br>10<br>E0                   | 0E<br>1F<br>0E<br>E0<br>00<br>1F<br>01                   | FE<br>01<br>EE<br>0F<br>0E<br>F0<br>F1                   | F1<br>FF<br>EF<br>1E<br>FF<br>11<br>01                   | 10<br>1F<br>11<br>0E<br>0E<br>10                   | FE<br>0F<br>11<br>00<br>FE<br>EF<br>F1<br>E1             | FF<br>E0<br>FF<br>11<br>0E<br>0F<br>1F<br>FE             | ······                                |              |   |
| 5301528<br>5301661<br>5301794<br>5301927<br>5302060<br>5302194<br>5302327                                     |                     | 1008<br>1010<br>1018<br>1020<br>1028<br>1030<br>1038<br>1040         | E0<br>F1<br>F0<br>F1<br>1F<br>1E<br>EE<br>1E<br>F0       | 00<br>00<br>E1<br>F1<br>00<br>10<br>E0<br>0F<br>01 | 0E<br>1F<br>0E<br>E0<br>00<br>1F<br>01<br>0F<br>E0       | FE<br>01<br>EE<br>0F<br>0E<br>F0<br>F1<br>1E<br>E0       | F1<br>FF<br>EF<br>1E<br>FF<br>11<br>01<br>11<br>EF       | 00<br>10<br>1F<br>11<br>0E<br>0E<br>10<br>FF<br>FF | FE<br>0F<br>11<br>00<br>FE<br>EF<br>F1<br>F1<br>11       | FF<br>E0<br>FF<br>11<br>0E<br>0F<br>1F<br>EF<br>EF       | ······                                |              |   |
| 5301528<br>5301661<br>5301794<br>5301927<br>5302060<br>5302194<br>5302327<br>5302327                          |                     | 1008<br>1010<br>1018<br>1020<br>1028<br>1030<br>1038<br>1040<br>1048 | E0<br>F1<br>F0<br>F1<br>1F<br>1E<br>EE<br>1E<br>E0<br>FE | 00<br>E1<br>F1<br>00<br>10<br>E0<br>0F<br>01<br>F0 | 0E<br>1F<br>0E<br>E0<br>00<br>1F<br>01<br>0F<br>F0<br>FE | FE<br>01<br>EE<br>0F<br>0E<br>F0<br>F1<br>1E<br>F0<br>EF | F1<br>FF<br>EF<br>1E<br>FF<br>11<br>01<br>11<br>FF<br>0E | 10<br>1F<br>11<br>0E<br>0E<br>10<br>FF<br>EE<br>01 | FE<br>0F<br>11<br>00<br>FE<br>EF<br>F1<br>F1<br>11<br>F1 | FF<br>E0<br>FF<br>11<br>0E<br>0F<br>1F<br>EF<br>FF<br>11 | ······                                |              |   |
| 5301528<br>5301661<br>5301794<br>5301927<br>5302060<br>5302194<br>5302327<br>5302460                          |                     | 1008<br>1010<br>1018<br>1020<br>1028<br>1030<br>1038<br>1040<br>1048 | E0<br>F1<br>F0<br>F1<br>1F<br>1E<br>EE<br>1E<br>E0<br>FE | 00<br>E1<br>F1<br>00<br>10<br>E0<br>0F<br>01<br>F0 | 0E<br>1F<br>0E<br>E0<br>00<br>1F<br>01<br>0F<br>F0<br>FE | FE<br>01<br>EE<br>0F<br>0E<br>F0<br>F1<br>1E<br>F0<br>EF | F1<br>FF<br>EF<br>1E<br>FF<br>11<br>01<br>11<br>FF<br>0E | 10<br>1F<br>11<br>0E<br>0E<br>10<br>FF<br>EE<br>01 | FE<br>0F<br>11<br>00<br>FE<br>EF<br>F1<br>F1<br>11<br>F1 | FF<br>E0<br>FF<br>11<br>0E<br>0F<br>1F<br>EF<br>FF<br>11 | · · · · · · · · · · · · · · · · · · · |              |   |
| 5301528     5301661     5301794     5301927     5302060     5302194     5302294     5302327     5302460     ◀ |                     | 1008<br>1010<br>1018<br>1020<br>1028<br>1030<br>1038<br>1040<br>1048 | E0<br>F1<br>F0<br>F1<br>1F<br>1E<br>EE<br>1E<br>E0<br>FE | 00<br>E1<br>F1<br>00<br>10<br>E0<br>0F<br>01<br>F0 | 0E<br>1F<br>0E<br>E0<br>00<br>1F<br>01<br>0F<br>F0<br>FE | FE<br>01<br>EE<br>0F<br>0E<br>F0<br>F1<br>1E<br>F0<br>EF | F1<br>FF<br>EF<br>1E<br>FF<br>11<br>01<br>11<br>FF<br>0E | 10<br>1F<br>11<br>0E<br>0E<br>10<br>FF<br>EE<br>01 | FE<br>0F<br>11<br>00<br>FE<br>EF<br>F1<br>F1<br>11<br>F1 | FF<br>E0<br>FF<br>11<br>0E<br>0F<br>1F<br>EF<br>FF<br>11 | · · · · · · · · · · · · · · · · · · · |              |   |



串行同步接口,常应用在无线通讯传输。由六条信号通道组成,其中只有四条为 信号传输,分别是串行频率线(SCK)、封包同步线(包括接收封包同步、传送封包 同步,简称FS)、数据传送线(TD)及数据接收线(RD)。有两种传输模式:正常模 式(Normal)及网络模式(Network)。

参数设置

| SSI 参教设        | 置 🗾 📕               |
|----------------|---------------------|
| 参数设置           |                     |
| - <u>`</u> o   | ┌通道设置模式             |
| : <b>-</b> /   | SCK СНО             |
|                | FS CH 1             |
|                | DATA CH 2 子 C 网络    |
|                |                     |
|                | ● 传送数据 ● 接收数据       |
|                | □ 将无意义的数据合并         |
| 波形颜色           |                     |
| m              | 设置数据的颜色             |
| •••            | 11 Hex 🔽            |
|                | 22 Hex 🔽            |
|                | 33 Hex 🔽            |
|                | 44 Hex 🗸            |
| 范围选择           |                     |
| : <b>n.n</b> : | 选择要分析的范围            |
| ***            | 起始位置                |
|                | 缓冲区开头         缓冲区结尾 |
|                | · 缺省 确定 取消          |

通道设置:设置待测物上各个信号端接在逻辑分析仪的通道编号。

模式:选择一般或是网络模式。

数据方向:选择传送或是接收数据。

将无意义的数据合并:合并无意义的数据,仅在网络接收模式可以使用。



## 分析结果

一般传送

| Time/Div: 80 u 🖲<br>Acquired: 08:00 | 3.89 n  | 15 4.018 | ms 4.146 r            | ms 4.274 m | s 4.402 ms | 4.53 ms            | 4.658 m | ns 4.786 | ms . |
|-------------------------------------|---------|----------|-----------------------|------------|------------|--------------------|---------|----------|------|
|                                     |         |          | · · · · · · · · · · · |            |            |                    |         |          |      |
|                                     | Idle 75 | Idle     | Вб                    |            | Idle       | 75                 | Idle    | ВР       | Idle |
| о ѕск                               |         |          |                       |            |            |                    |         |          |      |
| SSI 1 FC                            |         |          |                       |            |            |                    |         |          |      |
|                                     |         | 1600     |                       | 3.         |            |                    | 159,950 |          |      |
| 2 DATA                              | 30u     | 160u     |                       | 33         | 9.95u      | 30u 🛛              | 159.95u |          |      |
| SSI                                 |         |          |                       |            |            |                    |         |          |      |
| Label Channel                       | •       |          |                       |            |            |                    |         |          |      |
| CHIGH HIGH                          |         |          |                       | I          |            |                    |         |          |      |
| CH-01 CH-00                         |         | 551(551) | <b>_</b>              |            |            |                    |         |          |      |
| Timestamp                           | Event   | DO       | Dl                    | D2 :       | D3 D       | 4 I                | 05      | D6       | D7 🔺 |
| 3.51955 ms                          | Idle    |          |                       |            |            |                    |         |          |      |
| 3.8395 ms                           |         | 75       |                       |            |            |                    |         |          |      |
| 3.9195 ms                           | Idle    |          |                       |            |            |                    |         |          |      |
| 4.0795 ms                           |         | B6       |                       |            |            |                    |         |          |      |
| 4.1595 ms                           | Idle    | 95       |                       |            |            |                    |         |          |      |
| 4.4/945 ms                          | T-11-   | 75       |                       |            |            |                    |         |          |      |
| 4.33943 ms                          | Idle    | P6       |                       |            |            |                    |         |          |      |
| 4.7194 ms                           | Tdle    | 50       |                       |            |            |                    |         |          |      |
| 5 11935 mg                          | Idic    | 75       |                       |            |            |                    |         |          |      |
| 5.19935 ms                          | Idle    | 70       |                       |            |            |                    |         |          |      |
| 5.35935 ms                          |         | B6       |                       |            |            |                    |         |          |      |
| •                                   |         |          |                       |            |            | 1                  |         |          |      |
|                                     |         |          |                       |            | 34         | 411 <mark>B</mark> | 3411    | A<br>B   | o ©∭ |

## 一般接收

| Time/Div: 80 us                                   | -3 504  | ms -3.376 | ims -3.24           | 3 ms 3 12 | ms -2.992 | ms -2.864 | 1 ms -2 73 | 5 ms -2 60. | 8 ms    | 9 |
|---------------------------------------------------|---------|-----------|---------------------|-----------|-----------|-----------|------------|-------------|---------|---|
| Acquired. 00.00.                                  |         |           |                     |           |           |           |            |             |         |   |
|                                                   | D9 Idle | 98 Idle   | 75                  | Idle      | E6 D      | 9 Idle    | 9B Idle    | 75          | Idle    |   |
| 0 SCK                                             |         |           |                     |           |           |           |            |             |         |   |
| 1 FS                                              |         |           |                     | 230u      |           | 389.95u   |            |             |         |   |
| 2 DATA                                            | ]   80u | 89,950    | л <u>во</u> ц [] [] | 160u      |           | ]   80u   | 90u        | 30u         |         |   |
| 351                                               |         |           |                     |           |           |           |            |             |         | - |
| Label Channel                                     | •       |           |                     |           |           |           |            |             | Þ       |   |
| CH-00         CH-00           CH-01         CH-00 |         | SSI(SSI)  | -                   | ]         |           |           |            |             |         |   |
| Timestamp                                         | Event   | DO        | Dl                  | D2        | D3        | D4        | D5         | D6          | D7      |   |
| -3.7482 ms                                        |         | B6        | D9                  |           |           |           |            |             |         |   |
| -3.5882 ms                                        | Idle    |           |                     |           |           |           |            |             |         |   |
| -3.5082 ms                                        |         | 9B        |                     |           |           |           |            |             |         |   |
| -3.4282 ms                                        | Idle    |           |                     |           |           |           |            |             |         |   |
| -3.34825 ms                                       |         | 75        |                     |           |           |           |            |             |         |   |
| -3.26825 ms                                       | Idle    | DC        | 20                  |           |           |           |            |             |         |   |
| -3.10825 ms                                       | Talla   | Вр        | D9                  |           |           |           |            |             |         |   |
| -2.9403 MS                                        | Idle    | 9B        |                     |           |           |           |            |             |         |   |
| -2.7883 ms                                        | Idle    |           |                     |           |           |           |            |             |         |   |
| -2.7083 ms                                        |         | 75        |                     |           |           |           |            |             |         |   |
| -2.6283 ms                                        | Idle    |           |                     |           |           |           |            |             |         | Ţ |
| •                                                 |         |           |                     |           |           |           |            |             | Þ       | ſ |
|                                                   |         |           |                     |           | A         | 3411 📕    | 3411       | B           | 0 © ]]] | m |



#### 网络传送



#### 网络接送

|             | Ģ                     |        |              |         |            |        |        |                      |      |
|-------------|-----------------------|--------|--------------|---------|------------|--------|--------|----------------------|------|
| 55I<br>     | 0 SCH<br>1 FS<br>2 DA | raie ) |              | Idle 99 |            | 75<br> | Idle ) |                      | •    |
| Label       | Chan Value            | •      |              | 1       |            |        |        | <u>.</u>             |      |
| Timestamp   | Event                 | DO     | Dl           | D2      | D3         | D4     | D5     | D6                   |      |
| 47.4456 ms  |                       | B6     | D9           |         |            |        |        |                      |      |
| 47.60555 ms | Idle                  |        | and a second |         |            |        |        |                      |      |
| 47.68555 ms | Distriction of the    | 9B     |              |         |            |        |        |                      |      |
| 47.76555 ms | Idle                  | 1000   |              |         |            |        |        |                      |      |
| 47.84555 ms |                       | 75     |              |         |            |        |        |                      |      |
| 47.92555 ms | Idle                  | 12     |              |         |            |        |        |                      |      |
| 48.0855 ms  |                       | B6     | D9           |         |            |        |        |                      |      |
| 48.2455 ms  | Idle                  |        |              |         |            |        |        |                      |      |
| 48.3255 ms  |                       | 9B     |              |         |            |        |        |                      |      |
| 48.40545 ms | Idle                  |        |              |         |            |        |        |                      |      |
| 48.48545 ms |                       | 75     |              |         |            |        |        |                      |      |
| 48.56545 ms | Idle                  |        |              |         |            |        |        |                      | -    |
|             |                       |        |              |         |            |        |        | •                    | Г    |
|             |                       |        |              | A -1    | 70.55 us 🔒 |        | 0 8    | o <mark>O</mark> []] | 1111 |



# ST7669

ST7669 由 Sitronix(硅创)所研发的芯片,主要应用在 LCD 的屏幕模块上。

### 参数设置

| ST7669   | 参数设置                           |                    |           | × |
|----------|--------------------------------|--------------------|-----------|---|
| 参数设置     | t                              |                    | 波形颜色      |   |
| 1        | 类别 3线ST7669                    | •                  | 🕕 设置栏位的颜色 |   |
|          | ┌通道设置———                       |                    | D/C       |   |
|          | Chip Select Channel (/CS)      | сно 🕂              | Command   |   |
|          | Clock Channel (SCL)            | CH 1               | Data      |   |
|          | Serial Data Input (MPU SI)     | CH 2 •             | Read      |   |
|          | Serial Data Input (LCD SI)     | CH 3               |           |   |
|          | AO                             | CH 4               |           |   |
| 分析范围     | 1                              |                    |           |   |
| <b>K</b> | 选择要分析的范围<br>起始位置<br>缓冲区开头    ▼ | 结束位置<br>缓冲区结尾    ▼ |           |   |
|          |                                |                    |           | [ |

类别:可选择3线、4线、5线模式。

Chip Select Channel (/CS): ST7669 数据传输之 CS。

Clock Channel (SCL): ST7669 数据传输之 Clock。

Serial Data Input (MPU SI): ST7669 数据传输之 MPU Data Input。

Serial Data Input (LCD SI): ST7669 数据传输之 LCD Data Input。

A0: ST7669 数据传输之 A0。



## 分析结果

| Time/Div: 16 us         |                                 |                                          |                            | <b>P</b>      |
|-------------------------|---------------------------------|------------------------------------------|----------------------------|---------------|
| Acquired: 08:00:00      | ).0 67.165 ms 67                | 7.191 ms 67.216 ms 67.242 ms             | 67.267 ms 67.293 ms 67.319 | ms 67.344 ms  |
| 0 Chip Se               | 02 Juknown) 03                  | Unknown) 04 Unknown)<br>u 10u 28.99u 10u | 05 Unknown<br>28u 37.99u   | 42u           |
| CH-00 1 SCL             | 20.99u                          | 210 21.990                               | 63,99u                     |               |
| 2 MPU SI                | 35.99u                          | 4u 32u 24.99u 10                         | u 78.99u                   |               |
| 3 LCD SI                |                                 |                                          |                            |               |
| 311009                  |                                 |                                          |                            |               |
| Label Channel           |                                 |                                          | 1                          |               |
| CH-00 CH-00 CH-00 CH-00 | <b>FLR Desc </b> [CH-00(ST7669) | ) 🔽                                      |                            |               |
| Timestamp               | D/C                             | Data or Parameter/Command                | ID Data(Read) ASCII        | ▲             |
| 67.13633 ms             | 0x00 (Command)                  | 02                                       |                            |               |
| 67.17432 ms             | 0x00 (Command)                  | 03                                       |                            |               |
| 67.21232 ms             | OxOO (Command)                  | 04                                       |                            |               |
| 67.25131 ms             | OxOO (Command)                  | 05                                       |                            |               |
| 67.3323 ms              | OxOO (Command)                  | 01                                       |                            |               |
| 67.36929 ms             | 0x00 (Command)                  | 02                                       |                            |               |
| 67.40729 ms             | 0x00 (Command)                  | 03                                       |                            |               |
| 67.44528 ms             | 0x00 (Command)                  | 04                                       | •                          |               |
| 67.48427 ms             | 0x00 (Command)                  | 05                                       | •                          |               |
| 67.56526 ms             | 0x00 (Command)                  | 01                                       | •                          |               |
| 67.60226 ms             | 0x00 (Command)                  | 02                                       | •                          |               |
| 67.64025 ms             | 0x00 (Command)                  | 03                                       | · ·                        |               |
| •                       |                                 |                                          |                            |               |
|                         |                                 | <b>1</b> 09                              | 1133 🚪 2715078 🔒           | 1623945 🕒 🔟 🎁 |



# SVI2

SVI2(Serial VID Interface 2.0)总线是 AMD 用于电源管理(Power Management)之 控制数据传输,典型的应用是在电压控制。SVI2 总线分析提供使用者检视讯号 在传输时之各项封包数据,节省使用者解析波形的时间。

SVI2 的工作电压为 1V - 1.8V,工作频率(max)为 20MHz,通道数(3 wire):SVC/SVD/SVT。

测量时注意触发准位须设置在0.6V-0.9V左右 这样就可以顺利的进行讯号触发。

| SVI2 参数记  | 壁畫                         |            |                      |          | ×     |
|-----------|----------------------------|------------|----------------------|----------|-------|
| 通道设置      |                            |            |                      |          |       |
| 1         | • SVI2.x                   | C SVI1.x   |                      |          |       |
|           | SVC CHO                    | SVD CH 1   | SVT                  | CH 2 📩   |       |
| 」<br>波形颜色 |                            |            |                      |          | ]<br> |
|           | Start / Stop               | <b>—</b> • | PSI1_L               | <b></b>  |       |
|           | VDD Selector               | <b></b>    | TEN                  | <b></b>  |       |
|           | VDDNB Selector             | <b>— –</b> | Load Line Slope Trim |          |       |
|           | Acknowledge                |            | Offset Trim          |          |       |
|           | PSIO_L                     | <b>—</b>   | SVTO                 | <b>•</b> |       |
|           | VID Code                   | <b></b>    | SVT1                 | <b>•</b> |       |
|           | VDD Voltage                | <b></b>    | VDD Current          | <b>•</b> |       |
|           | VDDNB Voltage              |            | VDDNB Current        |          |       |
| 分析范围      |                            |            |                      |          |       |
|           | 选择要分析的范围<br>起始位置<br>【缓冲区开头 |            | 结束位置<br>缓冲区结尾        | <b>-</b> |       |
|           |                            |            | 缺省 确定                | 取消       |       |

#### 参数设置

SVC: SVI2 数据传输之 Clock。

SVD: SVI2 数据传输之 Data。

SVT: SVI2 数据传输之 Telemetry Data Line;选择不勾选 SVT 就不会分析

Telemetry SVT 封包。

SVI2.x/SVI1.x: 选择 SVI2/SVI 解碼。

Reduced Report: 勾选时报告窗口仅会显示 SVD 和 VOTFC 封包,不会显示 SVT 封包。



### 分析结果

#### 勾选 SVT



#### 没勾选 SVT

| Time/Div: 30  | ns 🣮     |       |           |          |         |           |              |          |                    |           |                     |              |   |
|---------------|----------|-------|-----------|----------|---------|-----------|--------------|----------|--------------------|-----------|---------------------|--------------|---|
| Acquired: 11: | 09:2     | 240   | ).85 us   | 240.9 us | 240.9   | 95 us<br> | 241 us       | 241.0    | 5 us               | 241.1 us  | 241.15 us           | 241.2 us     |   |
|               |          |       | Const: 1D |          | VDD Se  | l: 1 - V  | /DDNB Sel: 0 | Const:   | 1                  | N         | PSI0_L: 0           | VID Code: 27 |   |
| SVI2 0        | svc 🗌    | 30n   | 20n 30    | n 20n    | 30n     | 20n       | 30n 20n      | 30n      | 20n                | 30n 20n   | 30n 20n             | 30n 20n 30r  |   |
| 2 S           | SVD      |       | 100       | n        |         | 50n       |              | 100n     |                    |           | 100n                | 50n          |   |
|               |          |       |           |          |         |           |              |          |                    |           |                     |              | - |
| Label C       | hannel 💻 |       |           |          |         |           |              |          |                    |           |                     |              |   |
| O/TT CH-00    | CH-00    | Bus   | SVI2(SVI  | 2)       | •       |           |              |          |                    |           |                     |              |   |
| Timestamp     | VDD      | VDDNB | VID Code  |          | PSI TFN | Slope     | e Trim       | Offset T | frim               | Error     |                     | Description  | - |
| 0.000240      | VDD(1)   | 0     | 1.30625V  | (27)     |         |           |              |          |                    | Invalid B | it Numbers!         |              |   |
| 0.000288      | VDD(1)   | 0     | 1.30625V  | (27)     |         |           |              |          |                    | Invalid B | it Numbers!         |              |   |
| 0.000336      | VDD(1)   | 0     | 0.90625V  | (67)     |         |           |              |          |                    | Invalid B | it Numbers!         |              |   |
| 0.000384      | VDD(1)   | 0     | 1.30625₹  | (27)     |         |           |              |          |                    | Invalid B | it Numbers!         |              |   |
| 0.000433      | VDD(1)   | 0     | 0.90625V  | (67)     |         |           |              |          |                    | Invalid B | it Numbers!         |              |   |
| 0.000481      | VDD(1)   | 0     | 0.90625₩  | (67)     |         |           |              |          |                    | Invalid B | it Numbers!         |              |   |
| 0.000529      | VDD(1)   | 0     | 0.90625V  | (67)     |         |           |              |          |                    | Invalid B | it Numbers!         |              |   |
| 0.000577      | VDD(1)   | 0     | 0.90625V  | (67)     |         |           |              |          |                    | Invalid B | it Numbers!         |              |   |
| 0.000625      | VDD(1)   | 0     | 1.30625V  | (27)     |         |           |              |          |                    | Invalid B | it Numbers!         |              |   |
| 0.000673      | VDD(1)   | 0     | 1.30625V  | (27)     |         |           |              |          |                    | Invalid B | it Numbers!         |              |   |
| 0.000721      | VDD(1)   | 0     | 0.90625V  | (67)     |         |           |              |          |                    | Invalid B | it Numbers!         |              |   |
| 0.000769      | VDD(1)   | 0     | 0.90625₹  | (67)     |         |           |              |          |                    | Invalid B | it Numbers!         |              | - |
| ·             |          |       |           |          |         |           |              |          |                    |           |                     |              | • |
|               |          |       |           |          |         |           | A            | 1207093  | 885 <mark>B</mark> | 12070     | 9385 <mark>8</mark> | <b>o</b> 🕒 J |   |



# **SVID** (Upon Request)

SVID(Serial VID) 总线协议是 Intel 用于电源管理 (Power Management) 之控制数据传输,典型的应用是在电压控制。 SVID 总线分析提供用户检视信号在传输时之各项数据,节省用户解析波形的时间。

SVID 的工作电压为 1.0 - 1.1V,工作频率(max)为 26.25MHz,通道数 (3 wire): SCLK/SDATA/ALERT。

测量时注意触发准位须设置在 0.5V-0.6V 左右,这样就可以顺利的进行信号触发。

支持版本:

IMVP7/VR12, VR12.1, VR12.5, VR12.6

IMVP8/VR13

IMVP9/VR14

If you have any issues with SVID protocol features, please contact your Intel Field Representative.

#### 参数设置

| SerialVID | b                                                         |   |
|-----------|-----------------------------------------------------------|---|
| 通道设       | a                                                         | _ |
| Þ         | SClk OH 0 · SData OH 1 · V Alert OH 2 ·                   |   |
|           | VR Controller<br>Single C Multiple VWM Spec. VR12.0(12.1) |   |
|           | 设置不解码条件 Fast slew rate 10                                 |   |
| 波形敵       |                                                           | _ |
|           | tart End 🗸                                                |   |
|           | ddress Turn around                                        |   |
|           | iommand ACK                                               |   |
|           | IA. Payload SL. Payload                                   |   |
|           | arity Frame fill                                          |   |
| 分析范       | E                                                         | _ |
| <b>8</b>  | 选择要分析的范围<br>起始位置     结束位置<br>继/中区开头                       |   |
|           | 缺省 确定 取消                                                  | 1 |



SClk: SVID 数据传输之 Clock。

SData: SVID 数据传输之 Data。

Alert: VID 设定成功之通知讯息。也可以不使用 Alert。

**VR Controller:** 指定目前 VR 内之 Controller 数量为 Single 或 Multiple。若指 定为 Multiple 时就可分别指定不同 Address 之 Startup PWM Spec.

**设定不解碼条件:** 可设定当 Stop pattern 错误或是 Duty cycle 与规格不符时不进行译码。

#### 分析结果

| Time/Div: 120 ns                                                                                                                                                                            |                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                 |                            |                                                                                                                                                                                                                                                                                      | <b>U</b> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Acquired: 08:00:                                                                                                                                                                            | 70.2                                             | 6us 70.46us                                                                                                                                                                           | 70.66 us 70.86 us 71.06 us                                                                                                                                                                                      | 71.26 us 71.4              | 46 us 71.66 u                                                                                                                                                                                                                                                                        | JS       |
| 0 SCIk                                                                                                                                                                                      | Idle <mark>Start</mark>                          | Addr:0 Cmd:GetRe                                                                                                                                                                      | g(7) MA.PL:\$R-slow(25) 9:0 End Tu                                                                                                                                                                              |                            | 2                                                                                                                                                                                                                                                                                    | Idle     |
| 1 SData                                                                                                                                                                                     | 40n40n                                           | 280n 120r                                                                                                                                                                             | 80n #0n 80n #0n#0n 80n 170n                                                                                                                                                                                     | 280n                       | 40n#0n                                                                                                                                                                                                                                                                               |          |
| 2 Alert<br>svid                                                                                                                                                                             |                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                 |                            |                                                                                                                                                                                                                                                                                      |          |
| Label Chapped                                                                                                                                                                               |                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                 |                            |                                                                                                                                                                                                                                                                                      |          |
|                                                                                                                                                                                             |                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                 |                            |                                                                                                                                                                                                                                                                                      |          |
| CH-00 CH-00 CH-00 CH-00                                                                                                                                                                     | RA Bus                                           | SVID(SVID)                                                                                                                                                                            | •                                                                                                                                                                                                               |                            |                                                                                                                                                                                                                                                                                      |          |
|                                                                                                                                                                                             |                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                 |                            |                                                                                                                                                                                                                                                                                      |          |
| Timestamp                                                                                                                                                                                   | Addr(h)                                          | Command(h)                                                                                                                                                                            | MA. Payload(h)                                                                                                                                                                                                  | SL. Payload(h)             | Ack                                                                                                                                                                                                                                                                                  | Error    |
| Timestamp<br>0.06069 ms                                                                                                                                                                     | Addr(h)<br>0                                     | Command(h)<br>SetRegDAT(6)                                                                                                                                                            | MA. Payload(h)<br>1.250V (C9)                                                                                                                                                                                   | SL. Payload(h)             | Ack<br>ACK(2)                                                                                                                                                                                                                                                                        | Error    |
| Timestamp<br>0.06069 ms<br>0.06305 ms                                                                                                                                                       | Addr(h)<br>0<br>1                                | Command(h)<br>SetRegDAT(6)<br>SetRegADR(5)                                                                                                                                            | MA. Payload(h)<br>1.250V (C9)<br>Vout max(30)                                                                                                                                                                   | SL. Payload(h)             | Ack<br>ACK(2)<br>NAK(1)                                                                                                                                                                                                                                                              | Error    |
| Timestamp           0.06069 ms           0.06305 ms           0.06538 ms                                                                                                                    | Addr (h)<br>0<br>1<br>1                          | Command(h)<br>SetRegDAT(6)<br>SetRegADR(5)<br>SetRegDAT(6)                                                                                                                            | MA. Payload(h)<br>1.250V (C9)<br>Vout max(30)<br>1.250V (C9)                                                                                                                                                    | SL. Payload(h)             | Ack<br>ACK(2)<br>NAK(1)<br>ACK(2)                                                                                                                                                                                                                                                    | Error    |
| Timestamp           0.06069 ms           0.06305 ms           0.06538 ms           0.06775 ms                                                                                               | Addr (h)<br>0<br>1<br>1<br>0                     | Command(h)<br>SetRegDAT(6)<br>SetRegADR(5)<br>SetRegDAT(6)<br>GetReg(7)                                                                                                               | MA. Payload(h)<br>1.250V (C9)<br>Vout max(30)<br>1.250V (C9)<br>SR-fast(24)                                                                                                                                     | SL. Payload(h)<br>OA       | Ack<br>ACK(2)<br>NAK(1)<br>ACK(2)<br>ACK(2)                                                                                                                                                                                                                                          | Error    |
| Timestamp<br>0.06069 ms<br>0.06305 ms<br>0.06538 ms<br>0.06775 ms<br>0.07016 ms                                                                                                             | Addr (h) 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Command(h)<br>SetRegDAT(6)<br>SetRegDAT(5)<br>SetRegDAT(6)<br>GetReg(7)<br>GetReg(7)                                                                                                  | MA. Payload(h)<br>1.250V (C9)<br>Vout max(30)<br>1.250V (C9)<br>SR-fast(24)<br>SR-slow(25)                                                                                                                      | SL. Payload(h)<br>OA<br>O2 | Ack<br>ACK(2)<br>NAK(1)<br>ACK(2)<br>ACK(2)<br>ACK(2)                                                                                                                                                                                                                                | Error    |
| Timestamp           0.06069 ms           0.06305 ms           0.06538 ms           0.06775 ms           0.07016 ms           0.07253 ms                                                     | Addr(h)<br>0<br>1<br>1<br>0<br>0<br>0<br>0       | Command(h)<br>SetRegDAT(6)<br>SetRegDAT(5)<br>SetRegDAT(6)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)                                                                                     | MA. Payload(h)<br>1.250V (C9)<br>Vout max(30)<br>1.250V (C9)<br>SR-fast(24)<br>SR-slow(25)<br>DC_LL(23)                                                                                                         | SL. Payload(h)<br>OA<br>O2 | Ack<br>ACK(2)<br>NAK(1)<br>ACK(2)<br>ACK(2)<br>ACK(2)<br>Rejet(3)                                                                                                                                                                                                                    | Error    |
| Timestamp           0.06069 ms           0.06305 ms           0.06538 ms           0.06775 ms           0.07016 ms           0.07253 ms           0.07863 ms                                | Addr (h)<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0 | Command(h)<br>SetRegDAT(6)<br>SetRegDAT(5)<br>SetRegDAT(6)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)                                                                        | MA. Payload(h)<br>1.250V (C9)<br>Vout max(30)<br>1.250V (C9)<br>SR-fast(24)<br>SR-slow(25)<br>DC_LL(23)<br>DC_LL(23)                                                                                            | SL. Payload(h)<br>OA<br>O2 | ACK<br>ACK(2)<br>NAK(1)<br>ACK(2)<br>ACK(2)<br>ACK(2)<br>Rejet(3)<br>Rejet(3)                                                                                                                                                                                                        | Error    |
| Timestamp<br>0.06069 ms<br>0.06305 ms<br>0.06538 ms<br>0.06775 ms<br>0.077016 ms<br>0.07253 ms<br>0.07863 ms<br>0.08472 ms                                                                  | Addr (h) 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Command(h)<br>SetRegDAT(6)<br>SetRegDAT(5)<br>SetRegOAT(6)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)                                                                        | MA. Payload(h)<br>1.250V (C9)<br>Vout max(30)<br>1.250V (C9)<br>SR-fast(24)<br>SR-slow(25)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)                                                                               | SL. Payload(h)<br>OA<br>O2 | Ack<br>ACK(2)<br>NAK(1)<br>ACK(2)<br>ACK(2)<br>ACK(2)<br>Rejet(3)<br>Rejet(3)<br>Rejet(3)                                                                                                                                                                                            | Error    |
| Timestamp<br>0.06069 ms<br>0.06305 ms<br>0.06538 ms<br>0.06775 ms<br>0.07016 ms<br>0.07253 ms<br>0.07663 ms<br>0.08472 ms<br>0.0908 ms                                                      | Addr (h) 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1   | Command(h)<br>SetRegDAT(6)<br>SetRegDAT(6)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)                                                              | MA. Payload(h)<br>1.250V (C9)<br>Vout max(30)<br>1.250V (C9)<br>SR-fast(24)<br>SR-slow(25)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)                                                                  | SL. Payload(h)<br>OA<br>O2 | Ack<br>ACK(2)<br>NAK(1)<br>ACK(2)<br>ACK(2)<br>ACK(2)<br>Rejet(3)<br>Rejet(3)<br>Rejet(3)<br>Rejet(3)                                                                                                                                                                                | Error    |
| Timestamp<br>0.06069 ms<br>0.06305 ms<br>0.06538 ms<br>0.06775 ms<br>0.07016 ms<br>0.07263 ms<br>0.07863 ms<br>0.08472 ms<br>0.0908 ms<br>0.09689 ms                                        | Addr (h) 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1   | Command(h)<br>SetRegDAT(6)<br>SetRegDAT(6)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)                                    | MA. Payload(h)<br>1.250V (C9)<br>Vout max(30)<br>1.250V (C9)<br>SR-fast(24)<br>SR-slow(25)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)                                                     | SL. Payload(h)<br>OA<br>O2 | Ack           ACK(2)           NAK(1)           ACK(2)           ACK(2)           ACK(2)           ACK(2)           ACK(3)           Rejet(3)           Rejet(3)           Rejet(3)           Rejet(3)           Rejet(3)           Rejet(3)           Rejet(3)                      | Error    |
| Timestamp<br>0.06069 ms<br>0.06305 ms<br>0.06538 ms<br>0.06775 ms<br>0.07716 ms<br>0.07253 ms<br>0.07863 ms<br>0.08472 ms<br>0.0908 ms<br>0.0908 ms<br>0.0908 ms<br>0.103 ms                | Addr (h) 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1   | Command(h)<br>SetRegDAT(6)<br>SetRegDAT(5)<br>SetRegDAT(6)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)                    | MA. Payload(h)<br>1.250V (C9)<br>Vout max(30)<br>1.250V (C9)<br>SR-fast(24)<br>SR-slow(25)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)                                        | SL. Payload(h)<br>OA<br>O2 | Ack           ACK(2)           NAK(1)           ACK(2)           ACK(2)           ACK(2)           ACK(3)           Rejet(3)           Rejet(3)           Rejet(3)           Rejet(3)           Rejet(3)           Rejet(3)           Rejet(3)           Rejet(3)           Rejet(3) | Error    |
| Timestamp<br>0.06069 ms<br>0.06305 ms<br>0.06538 ms<br>0.06775 ms<br>0.07716 ms<br>0.07253 ms<br>0.07863 ms<br>0.07863 ms<br>0.08472 ms<br>0.0908 ms<br>0.0908 ms<br>0.103 ms<br>0.16566 ms | Addr (h) 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1   | Command(h)<br>SetRegDAT(6)<br>SetRegDAT(5)<br>SetRegDAT(6)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>SetVID-Decay(3) | MA. Payload(h)<br>1.250V (C9)<br>Vout max(30)<br>1.250V (C9)<br>SR-fast(24)<br>SR-slow(25)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)                           | SL. Payload(h)<br>OA<br>O2 | Ack<br>ACK(2)<br>NAK(1)<br>ACK(2)<br>ACK(2)<br>ACK(2)<br>Rejet(3)<br>Rejet(3)<br>Rejet(3)<br>Rejet(3)<br>Rejet(3)<br>Rejet(3)<br>Rejet(3)                                                                                                                                            | Error    |
| Timestamp<br>0.06069 ms<br>0.06305 ms<br>0.06538 ms<br>0.06775 ms<br>0.07253 ms<br>0.07263 ms<br>0.07863 ms<br>0.08472 ms<br>0.0908 ms<br>0.09689 ms<br>0.103 ms<br>0.16566 ms              | Addr (h) 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1   | Command(h)<br>SetRegDAT(6)<br>SetRegDAT(6)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>GetReg(7)<br>SetVID-Decay(3)    | MA. Payload(h)<br>1.250V (C9)<br>Vout max(30)<br>1.250V (C9)<br>SR-fast(24)<br>SR-slow(25)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23)<br>DC_LL(23) | SL. Payload(h)<br>OA<br>O2 | Ack<br>ACK(2)<br>NAK(1)<br>ACK(2)<br>ACK(2)<br>ACK(2)<br>Rejet(3)<br>Rejet(3)<br>Rejet(3)<br>Rejet(3)<br>Rejet(3)<br>Rejet(3)<br>Rejet(3)                                                                                                                                            | Error    |



# SWD

Serial Wire Debug (SWD)为 ARM 公司所制定,以 SWDIO 和 SWDCLK 两只接脚构成的测试协议。可用来作为 CoreSight<sup>™</sup> Debug Access Port 的测试协议,为 JTAG 在低接脚数限制时的替代方案。

参数设置

| SWD 参 | 教设置           |            |                                        | ×        |
|-------|---------------|------------|----------------------------------------|----------|
| 参数设   | 置 ———         |            |                                        |          |
| -2    | _通道设置         |            | │ DP Register 高级显示                     |          |
| -     | SWDIO CH O    |            | 连结 AP 设置   Filter 设置  <br>○ Other      | 1        |
|       | SWDCLK CH 1   | -<br>-     | C JTAG-AP                              |          |
|       | Select Reg 初始 | 设置         | MEM-AP                                 |          |
|       | 🔲 🛛 Bank = 1  | A<br>V     | │ AP Register 高级显示<br>│ MEM AP 初始设置 —— |          |
|       | CtrlSel = (   | ) <b>•</b> | Endian Big                             |          |
|       |               |            | TAR Auto-Inc Off                       |          |
|       | 🖲 LSB First   |            | Access Size 32 Bits                    | -        |
|       | MSB First     | t          |                                        |          |
| 波形颜   | 范色 ————       |            |                                        |          |
|       | Start 📃       |            | Park Park                              | •        |
|       | DP / AP       |            | ] 🔻 Turn                               | <b>_</b> |
|       | RnW           |            | 🔽 АСК                                  | <b>_</b> |
|       | Addr          |            | ] 🚽 Data 🚺                             | <b>•</b> |
|       | Stop          |            | ▼ Parity                               | <b>_</b> |
| 分析范   | 這围 ————       |            |                                        |          |
| inn:  | 选择要分析的        | 范围         |                                        |          |
|       | 起始位置          |            | 结束位置                                   |          |
|       | 缓冲区开头         | •          | 缓冲区结尾  ▼                               |          |
|       |               | 缺省         | 确定取                                    | 消        |



SWDIO: I/O 讯号

SWDCLK: Clock 讯号

Select Reg 初始设置: 在未知 AP Select Register 初始值的情形下, LA 只会显示 Address 的数值而不是相对应的 Register,使用者可以手动设置 AP Select Register 中 Bank 和 Ctrl/Select 初始值。

| - Select Reg初始設定一 |            |        |       |         |     |     |      |    |    |    |
|-------------------|------------|--------|-------|---------|-----|-----|------|----|----|----|
| 🗖 Bank = 0        | Time       | Select | RnW   | Address | (h) | ACK | Data | a  |    |    |
| CtrlSel = 0       | -0.0003 ms | AP     | Write | 0       |     | OK  | 23 ( | 00 | 00 | 52 |
|                   |            |        |       |         |     |     |      |    |    |    |
| - Select Reo初始設定  |            |        |       |         |     |     |      |    |    |    |

| L | соссе подилинахис |            |        |       |         |          |       |     |     |    |    |    |
|---|-------------------|------------|--------|-------|---------|----------|-------|-----|-----|----|----|----|
|   | Bank = 0          | Time       | Select | RnW   | Address | (h)      |       | ACK | Dat | a  |    |    |
| l |                   | -0.0003 ms | AP     | Write | Bank 0  | Register | 0 (0) | OK  | 23  | 00 | 00 | 52 |
| l | Ctrisel = 0       |            |        |       |         |          |       |     |     |    |    |    |

位方向:选择 SWD 讯号中的数据为 LSB 或是 MSB。

显示 DP Reg Bit Assignments:显示 DP Register 内容所代表的意义。

| Select | RnW   | Address (h)         | ACK | Data            |    |
|--------|-------|---------------------|-----|-----------------|----|
| DP     | Write | SELECT Register (8) | OK  | 00 00 00 00     |    |
|        |       |                     |     | APSEL [31:24]   | 00 |
|        |       |                     |     | APBANKSEL [7:4] | 0  |
|        |       |                     |     | CTRLSEL [0]     | 0  |

连结 AP 设置: 可选择 MEM-AP 和 JTAG-AP 两种类型的 AP Register 译码方式,

若使用者选择为 Other 时, AP 的数据就只显示 Bank X Register X, 而不做更进

一步的解释。

| Other     | Time       | Select | RnW   | Address (h)           | ACK | Data        |
|-----------|------------|--------|-------|-----------------------|-----|-------------|
| C JTAG-AP | -0.0003 ms | AP     | Write | Bank 0 Register 0 (0) | OK  | 23 00 00 52 |
| C MEM-AP  | 0.0308 ms  | DP     | Read  | RDBUFF Register (C)   | OK  | 00 00 00 00 |
|           | 2.9998 ms  | AP     | Write | Bank 0 Register 1 (4) | OK  | 00 00 02 68 |
| C Other   | Time       | Select | RnW   | Address (h)           | ACK | Data        |
| ITAG-AP   | -0.0003 ms | AP     | Write | CSW Register (0)      | OK  | 23 00 00 52 |
|           | 0.0308 ms  | DP     | Read  | RDBUFF Register (C)   | OK  | 00 00 00 00 |
|           | 2.9998 ms  | AP     | Write | PSEL Register (4)     | OK  | 00 00 02 68 |
| O Other   | Time       | Select | RnW   | Address (h)           | ACK | Data        |
| ○ JTAG-AP | -0.0003 ms | AP     | Write | CSW Register (0)      | OK  | 23 00 00 52 |
| MEM-AD    | 0.0308 ms  | DP     | Read  | RDBUFF Register (C)   | OK  | 00 00 00 00 |
| - HEHAF   | 2.9998 ms  | AP     | Write | TAR Register (4)      | OK  | 00 00 02 68 |

显示 AP Reg Bit Assignments:显示 AP Register 内容所代表的意义,选择



#### MEM-AP 或是 JTAG-AP 时才会开放使用。

| MEM-AP                      | Select | RnW  | Address (h)   |     | ACK | Data              |       |
|-----------------------------|--------|------|---------------|-----|-----|-------------------|-------|
| ☑ 顯示 AP Reg bit assignments | AP     | Read | BASE Register | (8) | OK  | 00 00 00 00       |       |
|                             |        |      |               |     |     | BASEADDR [31:12]  | EOOFF |
|                             |        |      |               |     |     | Format [1]        | 1     |
|                             |        |      |               |     |     | Entry present [0] | 1     |

MEM-AP 初始设置:选择 MEM-AP 时,可以对 MEM-AP 的内容初始化设置,

在数据采集的过程中如遇到相对应数据位置的 Register 时,数据也会随着 Bus 的

内容更新。勾选 Endian 的勾选栏后便会开启显示数据和相对应的读写地址的功

能。

| • MEM-AP                    | AP | Read | DRW Register | (C) | OK | 00 00 00 0D             | TAR Address = E000EFF0 |
|-----------------------------|----|------|--------------|-----|----|-------------------------|------------------------|
| ☑ 顯示 AP Reg bit assignments |    |      |              |     |    | Big-Endian              |                        |
| - MFM AP初始設定                |    |      |              |     |    | 000D Access to E000EFF0 |                        |
|                             |    |      |              |     |    | 0000 Access to E000EFF2 |                        |
| 🕑 Endian 🛛 Big 💽            | AP | Read | DRW Register | (C) | OK | 00 00 00 E0             | TAR Address = E000EFF2 |
| TAR Auto-Inc Single 🔻       |    |      |              |     |    | Big-Endian              |                        |
|                             |    |      |              |     |    | 00E0 Access to E000EFF2 |                        |
| Access Size 16 Bits 💌       |    |      |              |     |    | 0000 Access to E000EFF4 |                        |

Filter 设置: 可设置过滤不需要观察的 Register。





## 分析结果

| Time/Div: 300 ns           | - <b>U</b> |         |                    |              |        |              |            |                   |        |       |         |             |
|----------------------------|------------|---------|--------------------|--------------|--------|--------------|------------|-------------------|--------|-------|---------|-------------|
| Acquired: 14:54:3          | 9.0 ,      | 152     | .999 ms 152.999 ms | 153 ms       | 153    | 3 ms 1       | 153.001 ms | 153.001 ms        | 153.00 | 2 ms  |         |             |
|                            | Í          | START   | SELECT : AP        | IODE : Write | ADD    | R : TAR Regi | ster       | PARITY            | ST     | OP    | PARK    |             |
| SWD 1S                     | WCLK       | 200     | 1 300n 300n :      | 300n 200n    | 300n 3 | 300n 200r    | 300n       | 300n 300n         | 200n   | 300n  | 300n    | i           |
| 0 S                        | WDIO       |         |                    | 500n         | 600n   |              |            | 1.6u              |        |       |         |             |
|                            |            |         |                    |              |        |              |            |                   |        |       |         | <u> </u>    |
| Label Ch                   | iannel     | •       |                    |              |        |              |            |                   |        |       | •       |             |
| CH-00 CH-00<br>CH-01 CH-00 | ភភ៦        | Bus SWD | (SWD) 💌            | 1            |        |              |            |                   |        |       |         |             |
| Timestamp                  | Select     | RnW     | Address (h)        | -            |        | ACK          | Data       |                   |        | Error | Message |             |
| 152.9983 ms                | AP         | Write   | TAR Register       | (            | (4)    | OK           | E0 00 E    | D FO              |        |       |         |             |
| 153.0275 ms                | AP         | Read    | DRW Register       | Ì            | (C)    | OK           | 00 00 0    | 0 00              |        |       |         |             |
| 153.0565 ms                | DP         | Read    | RDBUFF Register    |              | (C)    | OK           | 00 03 0    | 0 03              |        |       |         |             |
| 155.9984 ms                | AP         | Write   | TAR Register       | (            | 4)     | OK           | E0 00 E    | ID FO             |        |       |         |             |
| 156.0275 ms                | AP         | Read    | DRW Register       | (            | (C)    | OK           | 00 00 0    | 00 00             |        |       |         |             |
| 156.0565 ms                | DP         | Read    | RDBUFF Register    | (            | C)     | OK           | 00 03 0    | 00 03             |        |       |         |             |
| 158.9984 ms                | AP         | Write   | TAR Register       | (            | 4)     | OK           | E0 00 E    | ED FC             |        |       |         |             |
| 159.0292 ms                | AP         | Write   | DRW Register       | (            | (C)    | OK           | 01 00 0    | 00 00             |        |       |         |             |
| 159.0601 ms                | DP         | Read    | RDBUFF Register    | (            | (C)    | OK           | 00 00 0    | 00 00             |        |       |         |             |
| 164.9986 ms                | AP         | Write   | TAR Register       | (            | 4)     | OK           | 20 00 0    | 00 00             |        |       |         |             |
| 165.0295 ms                | AP         | Write   | DRW Register       | (            | (C)    | OK           | EO OA E    | 3E 00             |        |       |         |             |
| 165.0604 ms                | AP         | Write   | DRW Register       | (            | (C)    | OK           | 06 2D 7    | 78 OD             |        |       |         |             |
| 165.0913 ms                | AP         | Write   | DRW Register       |              | (C)    | OK           | 24 08 4    | 40 68             |        |       |         |             |
| 165.1221 ms                | AP         | Write   | DRW Register       |              | (C)    | OK           | D3 00 0    | 00 40             |        |       |         |             |
| 165.153 ms                 | AP         | Write   | DRW Register       |              | (C)    | OK           | 1E 64 4    | 40 58             |        |       |         |             |
| 165.1839 ms                | AP         | Write   | DRW Register       | (            | (C)    | OK           | 1C 49 D    | )1 FA             |        |       |         | -           |
| •                          |            |         |                    |              |        |              |            |                   |        |       | Þ       |             |
|                            |            |         |                    |              | A      | 6            | B B        | 88 <mark>8</mark> |        |       | 20 🕒 🛙  | <b>1111</b> |

## 选择 MEM-AP 分析结果(不显示 Bit Assignments)

## 选择 MEM-AP 分析结果(显示 Bit Assignments)

| Time/Div:                          | 300 ns    | <b>U</b>        |                 |        |                  |                   |      |                        |          |           |
|------------------------------------|-----------|-----------------|-----------------|--------|------------------|-------------------|------|------------------------|----------|-----------|
| Acquired:                          | 14:54:39. | 0 152.9         | 99 ms 152.999 m | 5      | 153 ms 153 ms    | 153.001 ms        | 153. | .001 ms 15             | 3.002 ms |           |
|                                    |           | START           | SELECT : AP     | MODE : | Write ADDR : TAR | Register          | PA   | RITY                   | STOP     | PARK      |
|                                    |           |                 |                 |        |                  | -                 |      |                        |          |           |
| SWD                                | 1 SW0     | CLK 200n        | 300n 300n       | 300n   | 200n 300n 300n   | 200n 300n         | 300n | 300n 200               | n 300n   | 300n      |
|                                    | o swi     | 010             |                 | 500r   | n 600n           |                   | 1    | l.6u                   |          |           |
|                                    | SWD       |                 |                 |        |                  |                   |      |                        |          | · ·       |
| Label                              | Chan      | nel             |                 |        |                  |                   |      |                        |          |           |
| € 111 CH-00 CH-00 PRR )Bus (SWD) ▼ |           |                 |                 |        |                  |                   |      |                        |          |           |
| Times                              | RnW       | Address (h)     |                 | ACK    | Data             |                   |      | Infomation             | n Error  | Message 🔺 |
| 194.23                             |           |                 |                 |        | STICKYCMP [4]    |                   | 0    |                        |          |           |
| 194.23                             |           |                 |                 |        | TRNMODE [3:2]    |                   | 0    |                        |          |           |
| 194.23                             |           |                 |                 |        | STICKYORUN [1]   |                   | 0    |                        |          |           |
| 194.23                             |           |                 |                 |        | ORUNDETECT [0]   |                   | 0    |                        |          |           |
| 196.99                             | Write     | TAR Register    | (4)             | OK     | E0 00 ED F0      |                   |      |                        |          |           |
| 197.02                             | Write     | SELECT Register | (8)             | OK     | 00 00 00 10      |                   |      |                        |          |           |
| 197.02                             |           |                 |                 |        | APSEL [31:24]    |                   | 00   |                        |          |           |
| 197.02                             |           |                 |                 |        | APBANKSEL [7:4]  |                   | 1    |                        |          |           |
| 197.02                             |           |                 |                 |        | CTRLSEL [0]      |                   | 0    |                        |          |           |
| 197.05                             | Write     | BD2 Register    | (8)             | OK     | 00 00 00 00      |                   |      |                        |          |           |
| 197.08                             | Write     | BD1 Register    | (4)             | OK     | 00 01 00 00      |                   |      |                        |          |           |
| 197.11                             | Read      | BDO Register    | (0)             | OK     | 00 00 00 00      |                   |      |                        |          |           |
| 197.14                             | Read      | BDO Register    | (0)             | OK     | 00 03 00 03      |                   |      |                        |          |           |
| 197.17                             | Write     | BD2 Register    | (8)             | OK     | 00 00 02 00      |                   |      |                        |          |           |
| 197.20                             | Write     | BD1 Register    | (4)             | OK     | 00 01 00 01      |                   |      |                        |          |           |
| 197.23                             | Read      | BDO Register    | (0)             | 0K     | 00 00 00 00      |                   |      |                        |          |           |
| •                                  |           |                 |                 |        |                  |                   |      |                        |          |           |
|                                    |           |                 |                 |        | A                | 68 <mark>B</mark> |      | 88 <mark>A</mark><br>B |          | 20 🕒 🖽    |



# SWP

SWP(Single Wire Protocol)由 Europen Telecommunications Standards Insitute(ETSI) 制定标准,用在 SIM 卡以及 NFC 之间的通讯。

参数设定

| SWP 参數設     | 定                    | × |  |  |  |  |
|-------------|----------------------|---|--|--|--|--|
| 参数设置        | ) 新 ) 关 ) 广 <b>平</b> |   |  |  |  |  |
| <b>i</b>    |                      |   |  |  |  |  |
|             |                      |   |  |  |  |  |
|             | Sz johi 💽            |   |  |  |  |  |
|             | Data Link Layer:     |   |  |  |  |  |
|             |                      |   |  |  |  |  |
| 波形颜色        |                      |   |  |  |  |  |
|             | 设置数据的颜色              |   |  |  |  |  |
|             | SOF/EOF              |   |  |  |  |  |
|             | Payload 🗾 💌          |   |  |  |  |  |
|             | CRC16                |   |  |  |  |  |
| 范围选择        |                      |   |  |  |  |  |
| <b></b>     | 选择要分析的范围             |   |  |  |  |  |
| ₩ <b></b> + | 起始位置                 |   |  |  |  |  |
|             |                      |   |  |  |  |  |
|             | 结束位置                 |   |  |  |  |  |
|             |                      |   |  |  |  |  |
|             |                      |   |  |  |  |  |
|             | 缺省 确定 取消             |   |  |  |  |  |

S1: 待测物上的电压讯号。



S2: 待测物上的电流讯号,需自行将电流讯号转为电压讯号后再使用逻辑分析仪量测。

Data Link Layer:选择要依照 MAC 或是 LLC 规则进行译码。

### 分析结果

| Time/Div: 4 us                                    | <b>9</b>   |                                                     |                  |              |                        |              |           |                     |
|---------------------------------------------------|------------|-----------------------------------------------------|------------------|--------------|------------------------|--------------|-----------|---------------------|
| Acquired: 18:59:01                                | L          | 20.954 ms 20                                        | 0.96 ms 20.966 i | ms 20.973 ms | 20.979 ms              | 20.986 ms    | 20.992 ms | 20.998 ms           |
|                                                   | unkno      | wn S1_SOF                                           | Data: 62         | Data: 01     | CRC16_Err: 60          | CRC16_Érr: 6 |           | unknown             |
| SWP 6 S1                                          |            |                                                     |                  |              |                        |              |           |                     |
| 8 S2                                              |            |                                                     |                  |              |                        |              |           |                     |
| SWP                                               |            |                                                     |                  |              |                        |              |           |                     |
|                                                   |            |                                                     |                  |              |                        |              |           | -                   |
| Label Chan                                        | ne         |                                                     |                  |              |                        |              |           | •                   |
| CH-00         CH-00           CH-01         CH-00 | AR.        | Bus SWP(SWP)                                        | •                |              |                        |              |           |                     |
| Timestamp                                         | Туре       | Payload                                             |                  |              |                        |              | CRC16     | Infomati( 🔺         |
| 0.02089301 S                                      |            | ACT_SYNC(001):                                      | Oxffff           |              |                        |              |           |                     |
| 0.02095216 \$                                     | S1         | 62 01                                               |                  |              |                        |              |           |                     |
| 0.02095216 \$                                     |            | ACT LPDU                                            |                  |              |                        |              |           |                     |
| 0.02095216 \$                                     |            | FR(0): The UICC shall not repeat the last ACT frame |                  |              |                        |              |           |                     |
| 0.02095216 \$                                     | <b>6</b> 0 | AUT_POWER_MODE(010): Full power(01)                 |                  |              |                        |              |           |                     |
| 0.02103925 5                                      | 24         | ACT I DDII                                          |                  |              |                        |              | 0036      |                     |
| 0.02103925 5                                      |            | INR(0) · Contair                                    | s the ACT INFOR  | MATION info  |                        |              |           |                     |
| 0.02103925 5                                      |            | ACT READY(000)                                      | from UICC        |              |                        |              |           |                     |
| 0.02107901 \$                                     | S1         | F9 04                                               |                  |              |                        |              | 7D9B      | -                   |
| •                                                 |            | l                                                   |                  |              |                        |              |           |                     |
|                                                   |            |                                                     |                  |              |                        |              |           |                     |
|                                                   |            |                                                     |                  | <b>A</b>     | 4189268 <mark>B</mark> | 41892        | 217 📙     | 51 <mark>©∭∭</mark> |



# UART(RS-232,RS-485)

是美国电子工业联明制定的串行数据通信的接口标准。在RS-232 以及 RS-485 标准中,字符是以一串行的位串来一个接一个的串行方式传输,优点是传输线少, 配线简单,传送距离可以较远,由于 RS-485 为差动讯号,量测前须先将讯号传 换成逻辑讯号后才可量测.LA 无法直接量差动讯号。

#### 参数设置

UART 参数设置 × 参数设置 Line Wrap Data 以 Line Wrap Data 当作解碼排序之首,让观 看分析结果时,更为方便。 默认值为0A 。(数值使用16进制) 通道设置 极性 Idle high ▼ -CH 0 Тx -CH 0 □ Rx Line Wrap Data 第一组数值 颜色 ☑ 自动侦测 0A Baud Rate Data Bits 9600 ¥ 8 w 第二组数值 Parity Stop Bits 0A None 1 \* 分析范围 「 Start Bit之后是MSB ▶ 波形中显示刻度 \*\*\* 选择要分析的范围 □ 在报告视窗显示 Idle 状态 结束位置 起始位置 缓冲区开头 缓冲区结尾 --缺省 确定 取消

通道设置: Data 待测物上的讯号端接在逻辑分析仪的通道编号。

Rx: 勾选此模式后可在报告区同时看到 Tx 以及 Rx 讯号,此时通道 Data 会视为 Tx。

极性:分 Auto, Idle high, Idle low 三种格式。

Auto: 自动侦测 Idle 时为 High or Low。

Idle high: Idle 状态时显示为 High。

**Idle low:** Idle 状态时显示为 Low。

自动侦测:设置对方的波特率及格式或者由系统自动侦测。

波特率(Baud Rate):传送数据的速度,每秒钟多少位(bits per second),范围是



110-2M(bps) °

格式:分三种格式:同位检查、数据位和停止位。

**同位检查:** N-None Parity(无位)、O-Odd Parity(奇同位)、E-Even Parity(偶同位)。

**数据位:**可以设置为 5-10 位。

停止位:可以是1或者2位。

Start Bit 之后是 MSB: 缺省是 LSB,选定时, Start Bit 之后为 MSB。

报告显示 Idle: 在报告窗口中显示 Unknown 和 Idle。

波形中显示刻度:在波形上面显示刻度。

Line Wrap Data: 可设定两组数值当作解碼排序之首,方便观看分析结果。


### 分析结果

一般数据分析检视模式



### 开启Line Wrap Data 分析检视模式





# UNI/O

由 Microchip 制定,主要的应用领域是在 EEPROM。UNI/O 发展的背景是在目前 嵌入式系统的小型化趋势下,对于 I/O 引脚的数量少量化的需求中所发展出来, 同时也符合低成本,简单操作的一种单线总线通讯协议。UNI/O 是使用曼彻斯特 (Manchester Encoding)编码,数据传输率为 10Kbps 到 100Kbps

#### 参数设置

| UNI/    | 0参数设置    |         |      |                | ×       |
|---------|----------|---------|------|----------------|---------|
| 参数设置    | Ē        |         | 波形颜色 |                |         |
| 1       | 设置逻辑分析仪通 | 道       |      | Start Header   | <b></b> |
|         | 通道设置     | сно 🔶   |      | MAK/NoMAK      |         |
| Г       | - 器件地址   |         |      | SAK/NoSAK      |         |
|         | 8 bits   | 12 bits |      | Unknown        | <b></b> |
| L       |          |         |      | Device Address | <b></b> |
|         | 谷叶峡左夜直   |         |      | Command        | <b></b> |
|         | 兀叶聊八味左   | ±10%    |      | Address        | <b></b> |
|         | 允许输出误差   | ±25% 💌  |      | Data           | <b></b> |
|         | - 报告设置   |         |      | Hold           | <b></b> |
|         |          | 8栏 💌    |      | Standby Pulse  | <b></b> |
| 分析范围    | 1        |         |      |                |         |
| <b></b> | 选择要分析的范围 |         |      |                |         |
| , n n   | 起始位置     | 结束位置    |      |                |         |
| [       | 缓冲区开头 💌  | 缓冲区结尾 💌 |      |                |         |
|         |          |         |      | 缺省             | 确定取消    |

通道设置:默认 UNI/O 的通道为 0。

装置地址宽度:设置 UNI/O 信号装置地址宽度,8 Bits 或 12 Bits。

容许误差设置:设置允许输入误差/允许输出误差,默认为±10%和±25%。

报告设置:在报告窗口中数据显示方式8栏或16栏。



# 分析结果

| Time/Div: 32          | us 🯮           | 1(           | 0.816 ms  | 10.867 ms | 10 918 ms    | 10.959 ms      | 11.02 m  | s 11.072 m  | ns 1' | 1 123 ms | 11     | 1 174 ms | Ţ    |     |
|-----------------------|----------------|--------------|-----------|-----------|--------------|----------------|----------|-------------|-------|----------|--------|----------|------|-----|
| Acquired: 08:         | 100:00         |              |           | 1.1.1.1   |              | 1.1.1.1.1.1    |          |             | î     |          | î      | 1.1.1    |      | . 1 |
|                       | SCIO           | 5tart Header | MAK NSAK  |           | Famil        | y:A0 Device:00 |          | МАК         | SAK   |          | 96(WRE | EN)      |      |     |
| UNI/O                 |                | 24.83u       | 37.5u     | 25u 2     | 4.83u 25.25u |                |          | 25.08u      |       | 25.25u   |        | 25.08u   | 25u  |     |
|                       |                |              |           |           |              |                |          |             |       |          |        |          |      |     |
|                       |                |              |           |           |              |                |          |             |       |          |        |          |      | -   |
| Label (               | Channel        | •            |           |           |              |                |          |             |       |          |        |          | •    |     |
| €)/111 CH-00<br>CH-01 | СН-00<br>СН-00 | LT Bus       |           | 0)        | •            |                |          |             |       |          |        |          |      |     |
| Timestamp             | I              | Device Ad    | dress     | Comman    | d Word       | Address MS     | 3 Word # | Address LSB | DO    | Dl       | D2     | D3       | D4 4 | •   |
| 4.26766 ms            | F              | amily:AO     | Device:00 | 91(WRDI   | )            |                |          |             |       |          |        |          |      |     |
| 11.10303 ms           | Fa             | amily:AO     | Device:00 | 96 (WREN  | )            |                |          |             | _     |          |        |          |      |     |
| 12.32337 113          | r.             | milly.AO     | Device.00 | OD (ERAL  |              |                |          |             |       |          |        |          |      |     |
|                       |                |              |           |           |              |                |          |             |       |          |        |          |      |     |
|                       |                |              |           |           |              |                |          |             |       |          |        |          |      |     |
|                       |                |              |           |           |              |                |          |             |       |          |        |          |      |     |
|                       |                |              |           |           |              |                |          |             |       |          |        |          |      |     |
|                       |                |              |           |           |              |                |          |             |       |          |        |          |      |     |
|                       |                |              |           |           |              |                |          |             |       |          |        |          |      |     |
|                       |                |              |           |           |              |                |          |             |       |          |        |          |      | 4   |
|                       |                |              |           |           |              |                |          |             |       |          |        |          |      | -   |
| ▲                     |                |              |           |           |              |                |          |             |       |          |        |          | •    | -   |



### **USB1.1**

USB(Universal Serial Bus)称为"万用串行总线",起初由7家公司所制定的规格: 英特尔、微软、国家半导体、康柏电脑、北方电讯、NEC和AT&T。USB由1994 年起推动。由1.0版至1998年的1.1版,而目前为2000年所推出2.0版,USB1.1 版的速度由每秒12Mbs位至2.0版的480Mbs位。在USB协议中,主要是由2 条差分信号(D+和D-)来做为装置端和主机端连接沟通的触点。

#### 参数设置

| USB1.1 Decode参数设置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                    | <u>? ×</u>        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------|
| USB1.1 Decode参数设置         參數设置         通道设置         D+         CH0         D-         CH1         USB1.1总线协议设置         USB1.1总线协议设置         USB1.1总线协议设置         ISB         Ø         日动侦测         ①         G         日动侦测         ①         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ● | 分析范围<br>選擇要分析的範圍<br>起始位置<br>緩冲区开头<br>波形颜色<br>あの<br>次の<br>シ<br>シ<br>シ<br>シ<br>シ<br>シ<br>シ<br>シ<br>シ | ? × 结束位置  缓冲区结尾 ▼ |
| □ OUT □ STALL<br>□ DATAO □ PRE<br>□ 被形中显示刻度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | wValue<br>wIndex<br>wLength<br>Descriptor                                                          |                   |

**D+:** USB1.1 数据传输之 D+。

**D-**: USB1.1 数据传输之 D-。

**协议设置:**设置 USB1.1 信号为低速或是全速状态,是否译码 USB 标准申请和描述元。

标示 PID: 可以在报告窗口中根据所选择的 PID 种类标注特别颜色。



显示数据方式:在报告窗口中数据显示方式8栏或16栏。

过滤 PID: 可选择不显示特定数据。

波形中显示刻度:在波形上面显示刻度

#### 分析结果

| Time/Div: 250 ns | J         |                     |                 |                |                  |                  |           |                    |            |            |
|------------------|-----------|---------------------|-----------------|----------------|------------------|------------------|-----------|--------------------|------------|------------|
| Acquired: 08:00: | 9         | 63.655 us 964.05    | 5 us 964.455 us | 964.855 us     | 965.255 us       | 965.             | .655 us 9 | 66.055 us          | 966.455 u  | s<br>      |
|                  | Idle      | SYNC                | PID:SETUP       | Ad             | dress:01         | Endpoint:0       | 0 CRC5:1  | 7 <mark>EOP</mark> | Idle       | SYNC       |
| USB1.1 0 D+      | 80n8!     | 5n80n85n85n85n 245i | n 255n 165n 85  | in 165n 85n80r | 85n 80n85n 85n 8 | 5n80n85n         | 165n 335  | n 165n             | 170n 80n85 | in 80n 85n |
| 1 D-<br>USB1.1   | 80n8!     | 5n85n80n85n85n 250  | n 250n 165n 85  | in 165n 85n80r | 85n85n80n85n8    | 5n80n85n         | 165n      | 670n               | 80n85      | n85n80n    |
|                  |           |                     |                 |                |                  |                  |           |                    |            | <b>_</b>   |
| Label Chann      | •         |                     |                 |                |                  |                  |           |                    |            |            |
| CH-00 CH-00      | n n N     |                     | -               |                |                  |                  |           |                    |            |            |
| CH-01 CH-00      | A I A I A | Max 102B1.1(02B1    | .1)             |                |                  |                  |           |                    |            |            |
| Timestamp        | No.       | PID                 | Frame Number    | Address        | Endpoint         | CRC5             | DATA      |                    |            | ASCI 🔺     |
| 0                | 1         | SOF (TOKEN)         | 0718            |                |                  | 1A               |           |                    |            |            |
| 0.96344 ms       | 2         | SETUP (TOKEN)       |                 | 01             | 00               | 17               |           |                    |            |            |
| 0.96644 ms       | 3         | DATAO (DATA)        |                 |                |                  |                  | 40 04 82  | 00 00 00           | 08 00      | 0          |
| 0.974995 ms      | 4         | ACK (HANDSHAKE)     |                 |                |                  |                  |           |                    |            |            |
| 0.999935 ms      | 5         | SOF (TOKEN)         | 0719            |                |                  | 05               |           |                    |            |            |
| 1.003185 ms      | 6         | OUT (TOKEN)         |                 | 01             | 00               | 17               |           |                    |            |            |
| 1.006185 ms      | 7         | DATA1 (DATA)        |                 |                |                  |                  | 01 01 00  | 00 05 00           | 00 00      | ••••       |
| 1.014745 ms      | 8         | NAK (HANDSHAKE)     |                 |                |                  |                  |           |                    |            |            |
| 1.01985 ms       | 9         | OUT (TOKEN)         |                 | 01             | 00               | 17               |           |                    |            |            |
| 1.02285 ms       | 10        | DATA1 (DATA)        |                 |                |                  |                  | 01 01 00  | 00 05 00           | 00 00      | •••••      |
| 1.03141 ms       | 11        | NAK (HANDSHAKE)     |                 |                |                  |                  |           |                    |            |            |
| 1.036435 ms      | 12        | OUT (TUKEN)         |                 | 01             | 00               | 17               |           |                    |            | <b>_</b>   |
|                  |           |                     |                 |                |                  |                  |           |                    |            |            |
|                  |           |                     |                 | A              | 102400           | 0 <mark>8</mark> | 51        | 2 <mark>8</mark>   | 102348     | 88 ()]]]   |



### **USB PD 2.0**

USB PD (Power Delivery) 2.0 是基于 BMC (Biphase Mark Coding)的编码,应用在 笔记本电脑/平板计算机手机/行动电源等等具备有 USB Type-C 连接器的装置, 可进行电力供应或充电使用。可提供最大功率 100 W,使充电速度加快三倍,使 用者只需透过支持 USB-PD 的接口,即可以为装置充电。

#### 参数设置

| USB Power Delivery 2.0 参数设置 |                | ×        |
|-----------------------------|----------------|----------|
| ┌通道设置                       | ┌波形颜色────      |          |
| Configuration Channel (CC)  | Preamble       | •        |
| <u> </u>                    | SOP / EOP      | •        |
|                             | Header         | <b>_</b> |
|                             | Data Object(s) | •        |
| □ 波形显示 50 数据                |                | •        |
| 分析范围                        |                |          |
| · 选择要分析的范围                  |                |          |
| 起始位置 缓冲区开头 👤                | 結束位置 缓冲区结尾     | •        |
| 缺                           | 省 确定           | 取消       |

通道设置:选择 Configuration Channel (CC)的通道

波形显示 5b 数值: 切换显示 5b 或 4b 的数值



### 分析结果

波形 4b 显示



#### 波形 5b 显示

|   | Time/Div: 10 us  | U               | 171 0           | a 204 Guar 210 Guar 226 G | 0 93C 20 6     | 8.uz 204.8.uz 40 | Vi 9           | 421 Que 440 Que 464 Que   | 401 G.ur 402 G.ur 513 G |                         |
|---|------------------|-----------------|-----------------|---------------------------|----------------|------------------|----------------|---------------------------|-------------------------|-------------------------|
|   | augurreut avtert | ····· [         |                 |                           |                |                  |                |                           |                         |                         |
|   | USB PD           | SOP             | •               | Header (15 09 0E 09)      |                | Data (1          | LE 12 09 09 13 | 09 14 1A)                 | Data (1E 1E             | 09 15 1A 09 14 1A)      |
|   | 01963            |                 |                 |                           |                |                  |                |                           |                         |                         |
|   |                  |                 |                 |                           |                |                  |                |                           |                         |                         |
| н | Label            | hann( •         |                 |                           |                |                  |                |                           |                         | ·                       |
| L | Off CH-40 CH-40  | - RR    III DEX | USB PD(USB PD - | ]                         |                |                  |                |                           |                         |                         |
| n | Timestamp        | SOP Sequence    | Message Type    | Port Data/Power Role      | Cable Plug Rev | 7. Message ID    | Obj(s) Cnt     | Data Obj(s)               |                         |                         |
|   | 0.2134 ms        | SOP             | Source Capabi   | DFP/SRC                   | 2.0            | 0 0              | 3              | Fixed supply; DRP(0); Vol | t. (05.00 V); Max./Op   | era. current(03.00 A).  |
|   | 0.4801 ms        |                 |                 |                           |                |                  |                | Fixed supply; DRP(0); Vol | t. (12.00 V); Max./Op   | era. current(03.00 A).  |
|   | 0.6136 ms        |                 |                 |                           |                |                  |                | Fixed supply; DRP(0); Vol | t. (20.00 V); Max./Op   | era. current(03.00 A).  |
|   | 1.2491 ms        | SOP             | GoodCRC         | UFP/SNK                   | 2.0            | 0 0              | 0              |                           |                         |                         |
|   | 6.0155 ms        | SOP             | Request         | UFP/SNK                   | 2.0            | 0 0              | 1              | Fixed and Variable Reques | t; Obj. position(3);    | GiveBack flag(0); Oper. |
| Ш | 6.7797 ms        | SOP             | GoodCRC         | DFP/SRC                   | 2.0            | 0 0              | 0              |                           |                         |                         |
| Ш | 10.5462 ms       | SOP             | Accept          | DFP/SRC                   | 2.0            | 0 1              | 0              |                           |                         |                         |
| Ш | 11.182 ms        | SOP             | GoodCRC         | UFP/SNK                   | 2.0            | 0 1              | 0              |                           |                         |                         |
| Ш | 95.7084 ms       | SOP             | PS_RDY          | DFP/SRC                   | 2.0            | ) 2              | 0              |                           |                         |                         |
|   |                  |                 |                 |                           |                |                  |                |                           |                         |                         |



# Wiegand

Wiegand 通讯协议使用于非接触式的 IC 感应卡,门禁管制卡。由两根数据线所组成。

| 参数 | 设 | 置 |
|----|---|---|
|----|---|---|

| -         |                                                  |      |                          |      |   |
|-----------|--------------------------------------------------|------|--------------------------|------|---|
| Wiegand 参 | 教设置                                              |      |                          |      | × |
| 参数设置      | 通道设置<br>Data 0 CH 0<br>Data 1 CH 1               | 波形颜色 | 设置数据的颜<br>Data<br>Parity |      |   |
| 范围选择      | 选择要分析的范围<br>起始位置<br>缓冲区开头  ▼<br>结束位置<br>缓冲区结尾  ▼ |      |                          |      |   |
|           |                                                  |      | 缺省                       | 确定取消 | 肖 |

**Data 0:** Wiegand data 0  $\circ$ 

Data 1: Wiegand data 1 •



#### Acute Technology Inc. Copyright ©2018



第2章 总线触发



#### 何谓触发功能

触发功能是利用逻辑分析仪的硬件电路,在有限的时间内使用并行处理的技术, 检查待测信号是否符合触发条件,然后进行信号采集工作。理想的逻辑分析仪触 发功能,除了基本必须精准外,也尽量可以多样化。以满足各种信号采集的需求。

#### 触发模式

#### 1.前置触发(Pre-Trigger)

使用者在某些应用中,希望采集的信号是在触发点之前时,就必须启用前置触发 (Pre-Trigger)功能。在按下「开始采集」钮后,逻辑分析仪会等数据填满缓存区 开头至触发光标间的内存之后,才会让触发电路开始作用(是开始作用,不是发 出触发信号)。所以在逻辑分析仪还未填满缓存区至触发光标间的数据前,任何 符合触发条件的信号出现都不会让触发电路送出触发信号。

#### 2.后置触发(Post-Trigger)

这是最基本的触发方式,在按下「开始采集」钮后,逻辑分析仪待触发发生后开始从触发光标所指定的位置开始采集数据,待数据填满所有内存之后就会停止。

#### 3.触发延迟(Delay-Trigger)

使用者在某些应用中,希望采集的信号是在触发点之后,并延迟一段时间后才开始采集信号,就可以使用触发延迟功能,设置想要延迟的时间。当信号采集成功 后,触发光标将会停在开始采集数据的位置上。

#### 4.触发忽略次数(Pass Count)

代表所设置的触发参数要忽略的次数,一般状况Pass Count是设置在0次,这是代表只要触发参数成立时就会开始采集数据。如果设置为N次时,就代表触发参数必顸成立N+1次时才会开始采集数据。Pass Count的最大值会根据不同机种自动调整。



#### 触发共同设置

#### 1. 選擇觸發

点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触发条件」。



#### 2. 重设

清空所有触发条件,回到缺省。

#### 3. 存盘/载入

将已经设置的触发项目全部存储或是加载先前存储的触发档案。



硬件触发.

使用时机

| 硬件触发         | TravelLogic B+ | TravelLogic B | TravelLogic E | TravelLogic |
|--------------|----------------|---------------|---------------|-------------|
| CAN          | 0              | 0             |               | $\odot$     |
| eSPI         | 0              |               |               |             |
| I2C          | 0              | 0             |               | $\odot$     |
| I2S          | 0              | 0             | 0             | $\odot$     |
| LIN          | 0              | 0             |               |             |
| LPC          | 0              | $\odot$       |               |             |
| MIPI SPMI    | 0              |               |               |             |
| NAND Flash   | 0              |               |               |             |
| SD/eMMC      | 0              |               |               |             |
| Serial Flash | O              |               |               |             |
| SMBus/PMBus  | 0              | 0             |               |             |
| SPI          | O              | $\odot$       |               | $\bigcirc$  |
| SVI2         | O              | $\odot$       |               |             |
| SVID         | 0              | 0             |               | 0           |
| UART         | 0              | $\odot$       |               | 0           |
| USB 1.1      | 0              | 0             |               |             |

语句式触发(Clause trigger)是一种多阶层式的触发方式,并且设定各阶层之间的

因果关系。



# CAN 触发

#### 启用 CAN 触发

到「硬件参数设置」选择「CAN Trigger」,如下图所示。

| Mode                                 | Min. S/R | Max. S/R | Available ch. | Min. Mem. | Max 🔺 |
|--------------------------------------|----------|----------|---------------|-----------|-------|
| 🖃 🔄 CAN Trigger                      | 1Hz      | 200MHz   | Adjustable    | 256       | Adju  |
| ─                                    | 200MHz   | 200MHz   | Fixed         | Auto      | Auto  |
| — Transitional Storage-8             | 200MHz   | 200MHz   | Fixed         | Auto      | Aub   |
| ────── CAN Trigger-36                | 1Hz      | 200MHz   | Adjustable    | 256       | 2M    |
| –) ⊂AN Trigger-18                    | 1Hz      | 200MHz   | Adjustable    | 256       | 4M    |
| ──────────────────────────────────── | 1Hz      | 200MHz   | Adjustable    | 256       | 6M    |
| –) ⊂AN Trigger-9                     | 1Hz      | 200MHz   | Adjustable    | 256       | 8M    |
| –) ⊂AN Trigger-6                     | 1Hz      | 200MHz   | Adjustable    | 256       | 12M   |
| –) ⊂AN Trigger-4                     | 1Hz      | 200MHz   | Adjustable    | 256       | 18M   |
| –) ⊂AN Trigger-2                     | 1Hz      | 200MHz   | Adjustable    | 256       | 36M   |
| └── CAN Trigger-1                    | 1Hz      | 200MHz   | Adjustable    | 256       | 72M   |
| 🛨 🧰 I2C Trigger                      | 1Hz      | 200MHz   | Adjustable    | 256       | Adju  |
| 🛨 🧰 I2S Trigger                      | 1Hz      | 200MHz   | Adjustable    | 256       | Adju  |
| SPI Trigger(800M)-9                  | 800MHz   | 800MHz   | 9             | 256       | 8M    |
| 🕂 🥅 SPI Trioner                      | 1Hz      | 200MHz   | Adjustable    | 256       | Adi   |
| •                                    |          |          |               |           |       |

### 触发参数设置

按下「确定」后,点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触发条件」,点击「CAN 总线协议触发」,会出现如下图所示。

| CAN触发参数设置                   | ×              |
|-----------------------------|----------------|
| Data Rate 400K              | Channel 0      |
| Trigger On Start of Frame   | •              |
| CAN_L                       | ◯ CAN_H        |
| 🔿 11 Bits ID 🛛 🔿 29 Bits ID | Oh             |
| DATA Length 1               | DATA Compare = |
| DATA1 XXh                   | DATA2 XXh      |
| DATA3 XXh                   | DATA4 XXh      |
| DATA5 XXh                   | DATA6 XXh      |
| DATA7 XXh                   | DATA8 XXh      |
| Trigger on start of frame.  |                |
| Pre-Trigger                 | Pass Count: 0  |
| 载入 保存 重设                    | 確定 取消          |



**Data Rate:** 传送数据的速率。使用者可以自行输入,单位为 Hz、KHz、MHz, 也可输入小数点。

注意:输入的 Data Rate 允许的误差范围,尽量避免比待测物的 Data Rate 超过 5%,否则会无法触发。

如果不知道 Data Rate,可以让 CAN Bus Decode 先跑一次,协助计算 Data Rate, 再设置 Data Rate。否则 Data Rate 设置错误,会导致 CAN Trigger 设置失败。 Data Rate 计算结果将显示在报告区 Information 的第一列。

| Time/Div: 7.   | 68 😝                         |          |        |           |          |          |                       |           |       |                |              |           |            |          |
|----------------|------------------------------|----------|--------|-----------|----------|----------|-----------------------|-----------|-------|----------------|--------------|-----------|------------|----------|
| Acquired: 08   | :00                          | 85.53 us |        | 98.33 us  | 411.13 u | us 423.  | .93 us<br>1 - 1 - 1 - | 436.73 us | 449.5 | 3 us 462.33 us | 475.13       | us 487.9  | 3 us 500.  | 73 us    |
| CAN            |                              | DAT:     | F1     |           | DAT:97   |          | DAT:                  | E1        |       | DAT:01         | DAT:9        | c         | DAT:07     | <b>^</b> |
|                | CAN                          | ,        | 10u    | 4.99u 5.0 | nu       | 12.49u   |                       | 100       | 12.5  | J 5u 4.99      | u 5.01u 7.49 | 9u 12.51u | 5u         | 7.Su     |
| Label          | •                            |          |        |           |          |          |                       |           |       |                |              |           |            |          |
| CH-00<br>CH-01 | СН-00                        | Bus      | CAN(CA | AN)       | -        |          |                       |           |       |                |              |           |            |          |
| Timestamp      | Frame Type                   | ID       | DLC    | Data      |          |          | CRC (h)               | ASCII (Da | ta)   | Information    |              |           | Frame Dura | tion 🔺   |
| 0.30996 ms     | Std Data                     | 112      | 8      | CD F1 9   | 7 El 01  | 9C 07 7D | 38F5                  | }         |       | Data Rate: 4   | 100 Kbps     |           | 282.46 us  |          |
| 0.61991 ms     | Std Data                     | 112      | 8      | CD F1 9   | 7 El 01  | 9C 07 7D | 38F5                  | }         |       |                |              |           | 282.47 us  |          |
| 0.92987 ms     | Std Data                     | 112      | 8      | CD F1 9   | 7 El 01  | 9C 07 7D | 38F5                  | }         | L     |                |              |           | 282.46 us  |          |
|                |                              |          |        |           |          |          |                       |           |       |                |              |           |            |          |
|                | 7.99 us 🖁 98 us 🖥 90.01 us 🕒 |          |        |           |          |          |                       |           |       |                |              |           |            |          |

Channel: 选择通道。

Trigger On: 选择触发条件

Start of Frame: 起始封包。

ID Match:辨识匹配。

Data Frame: 数据封包。

Remote Frame: 远程封包。

Error Frame: 错误封包。

**Overload Frame:** 过载封包。

Stuffing Error: 填补错误。

CRC Error: CRC 错误。

Data Value: 数据。

Missing ACK: 错失响应信息。

End of Frame: 结束封包。



ID Match & Data Value: 辨识匹配及数据。

CAN\_H/CAN\_L: 选择 CAN\_H 或 CAN\_L 为触发通道。

11 Bits ID/29 Bits ID:辨识栏位长度。

DATA Length: 触发数据的个数,以 Byte 为单位。

**DATA Compare:** 针对数据作比对,包括=(等于)、>(大于)、<(小于)、!=(不等

于)、>=(大于等于)、<=(小于等于)。

**DATA1-DATA8:** 输入方式包含二进位码(后面加 b,如 01000001b)、十进位码 (后面不加,如 65)、十六进位码(后面加 h,如 41h)。

设置 Data Value 触发时,若必须 Pass 掉一些数据时,请输入 XX。例如:要触发的数据为 38h,但它会出现在 Data 区段的第 3 个 byte,就必须输入

DATA Length = 3

DATA1 = XX

DATA2 = XX

DATA3 = 38h

这样才会正确的触发。

#### 采集波形

按下「开始采集」钮。



| Time/Div:<br>Acquired:                                               | 4 us<br>08:00:00.0                                                                                       | <b>3</b>                                                           | 3:<br>                                                             | 15.56 u                                                      | 15<br>1 - 1                                                  | 321.9                                                                                           | 6 us                                                                         | 328                                                                                                               | 3.36 us i                                                    | 334.76 us 34                                                  | 1.16 us 347.56 us 3 | 53.96 us 360.36 us                                                                                                                                       |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAN                                                                  | 0 CAN_                                                                                                   |                                                                    | =                                                                  |                                                              |                                                              |                                                                                                 | в                                                                            | aseID:11                                                                                                          | 2                                                            | R                                                             | TR:0 10E:0 R0:0 DLC | .:8 DAT:CD                                                                                                                                               |
|                                                                      | CAN                                                                                                      |                                                                    | 7.5u                                                               | J                                                            | 2.50                                                         |                                                                                                 | 7.5u                                                                         |                                                                                                                   | 2.494 5.010                                                  | 2.49u                                                         | .10.01u 2.49u       | 7.51u 4.99u                                                                                                                                              |
|                                                                      |                                                                                                          |                                                                    |                                                                    |                                                              |                                                              |                                                                                                 |                                                                              |                                                                                                                   |                                                              |                                                               |                     | -                                                                                                                                                        |
| Label                                                                | Chann                                                                                                    |                                                                    |                                                                    |                                                              |                                                              |                                                                                                 |                                                                              |                                                                                                                   |                                                              |                                                               |                     | •                                                                                                                                                        |
|                                                                      | 00 CH-00 R                                                                                               | R DBus                                                             |                                                                    | N(CAN                                                        | I)                                                           |                                                                                                 | •                                                                            | ]                                                                                                                 |                                                              |                                                               |                     |                                                                                                                                                          |
| Tim                                                                  | Frame Type                                                                                               | ID                                                                 | DLC                                                                | Data                                                         |                                                              |                                                                                                 |                                                                              |                                                                                                                   | CRC (h)                                                      | ASCII(Data)                                                   | Information         | Frame Duration 🔺                                                                                                                                         |
| 0.30                                                                 | Std Data                                                                                                 | 112                                                                | 8                                                                  | CD F                                                         | 1 97                                                         | E1 01                                                                                           | 90                                                                           | 07 7D                                                                                                             | 38F5                                                         | }                                                             | Data Rate: 400 Kbps | 282.46 us                                                                                                                                                |
| 0.61                                                                 | Std Data                                                                                                 | 112                                                                | 8                                                                  | CD F                                                         | 1 97                                                         | E1 01                                                                                           | 90                                                                           | 07 7D                                                                                                             | 38F5                                                         |                                                               |                     | 282.47 us                                                                                                                                                |
| 0.92                                                                 | Std Data                                                                                                 | 112                                                                |                                                                    |                                                              |                                                              |                                                                                                 |                                                                              |                                                                                                                   |                                                              |                                                               |                     |                                                                                                                                                          |
| 1.23                                                                 |                                                                                                          |                                                                    | 8                                                                  | CD F                                                         | 1 97                                                         | E1 01                                                                                           | 9C                                                                           | 07 7D                                                                                                             | 38F5                                                         |                                                               |                     | 282.46 us                                                                                                                                                |
|                                                                      | Std Data                                                                                                 | 112                                                                | 8                                                                  | CD F<br>CD F                                                 | 1 97<br>1 97                                                 | E1 01<br>E1 01                                                                                  | . 9C<br>. 9C                                                                 | 07 7D<br>07 7D                                                                                                    | 38F5<br>38F5                                                 |                                                               |                     | 282.46 us<br>282.47 us                                                                                                                                   |
| 1.54                                                                 | Std Data<br>Std Data                                                                                     | 112<br>112                                                         | 8 8                                                                | CD F<br>CD F<br>CD F                                         | 1 97<br>1 97<br>1 97                                         | E1 01<br>E1 01<br>E1 01                                                                         | 9C<br>9C<br>9C                                                               | 07 7D<br>07 7D<br>07 7D                                                                                           | 38F5<br>38F5<br>38F5                                         | ·····}                                                        |                     | 282.46 us<br>282.47 us<br>282.46 us                                                                                                                      |
| 1.54                                                                 | Std Data<br>Std Data<br>Std Data                                                                         | 112<br>112<br>112                                                  | 8<br>8<br>8<br>8                                                   | CD F<br>CD F<br>CD F<br>CD F                                 | 1 97<br>1 97<br>1 97<br>1 97                                 | E1 01<br>E1 01<br>E1 01<br>E1 01                                                                | 9C<br>9C<br>9C<br>9C<br>9C                                                   | 07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D                                                                         | 38F5<br>38F5<br>38F5<br>38F5                                 | ······}<br>······}                                            |                     | 282.46 us<br>282.47 us<br>282.46 us<br>282.47 us                                                                                                         |
| 1.54<br>1.85<br>2.16                                                 | Std Data<br>Std Data<br>Std Data<br>Std Data                                                             | 112<br>112<br>112<br>112                                           | 8<br>8<br>8<br>8<br>8                                              | CD F<br>CD F<br>CD F<br>CD F<br>CD F                         | 1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97                 | E1 01<br>E1 01<br>E1 01<br>E1 01<br>E1 01<br>E1 01                                              | 90<br>90<br>90<br>90<br>90<br>90                                             | 07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D                                                                | 38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5                 | ······}<br>······}                                            |                     | 282.46 us<br>282.47 us<br>282.46 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.46 us                                                                  |
| 1.54<br>1.85<br>2.16<br>2.47                                         | Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data                                                 | 112<br>112<br>112<br>112<br>112<br>112                             | 8<br>8<br>8<br>8<br>8<br>8                                         | CD F<br>CD F<br>CD F<br>CD F<br>CD F<br>CD F                 | 1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97         | E1 0J<br>E1 0J<br>E1 0J<br>E1 0J<br>E1 0J<br>E1 0J                                              | 90<br>90<br>90<br>90<br>90<br>90<br>90                                       | 07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D                                              | 38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5         | ······}<br>······}<br>······}                                 |                     | 282.46 us<br>282.47 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us                                                     |
| 1.54<br>1.85<br>2.16<br>2.47<br>2.78<br>3.09                         | Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data                                     | 112<br>112<br>112<br>112<br>112<br>112<br>112<br>112               | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                     | CD F<br>CD F<br>CD F<br>CD F<br>CD F<br>CD F<br>CD F         | 1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97         | E1 0J<br>E1 0J<br>E1 0J<br>E1 0J<br>E1 0J<br>E1 0J<br>E1 0J                                     | L 9C<br>L 9C<br>L 9C<br>L 9C<br>L 9C<br>L 9C<br>L 9C                         | 07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D                                     | 38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5 | ······} ·····} ·····}                                         |                     | 282.46 us<br>282.47 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us                                        |
| 1.54<br>1.85<br>2.16<br>2.47<br>2.78<br>3.09<br>3.40                 | Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data                         | 112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112        | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                | CD F<br>CD F<br>CD F<br>CD F<br>CD F<br>CD F<br>CD F<br>CD F | 1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97 | E1 0J<br>E1 0J<br>E1 0J<br>E1 0J<br>E1 0J<br>E1 0J<br>E1 0J<br>E1 0J                            | . 9C<br>. 9C<br>. 9C<br>. 9C<br>. 9C<br>. 9C<br>. 9C<br>. 9C                 | 07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D<br>07 7D                            | 38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5 | ······}<br>······}<br>······}                                 |                     | 282.46 us<br>282.47 us<br>282.47 us<br>282.47 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.47 us<br>282.47 us                           |
| 1.54<br>1.85<br>2.16<br>2.47<br>2.78<br>3.09<br>3.40<br>3.71         | Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data             | 112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112 | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8      | CD F<br>CD F<br>CD F<br>CD F<br>CD F<br>CD F<br>CD F<br>CD F | 1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97 | E1 0)<br>E1 0)<br>E1 0)<br>E1 0)<br>E1 0)<br>E1 0)<br>E1 0)<br>E1 0]<br>E1 0]<br>E1 0]          | 1 9C<br>9C<br>9C<br>9C<br>9C<br>9C<br>9C<br>9C<br>9C                         | 07 7D<br>07 7D                   | 38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5 | ······)<br>······)<br>······)<br>······)<br>······)<br>······ |                     | 282.46 us<br>282.47 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.46 us<br>282.46 us              |
| 1.54<br>1.85<br>2.16<br>2.47<br>2.78<br>3.09<br>3.40<br>3.71<br>4.02 | Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data | 112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112 | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | CD F<br>CD F<br>CD F<br>CD F<br>CD F<br>CD F<br>CD F<br>CD F | 1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97 | E1 0)<br>E1 0) | 1 9C<br>9C<br>9C<br>9C<br>9C<br>9C<br>9C<br>9C<br>9C<br>9C                   | 07 7D<br>07 7D | 38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5 | ······)<br>······)<br>······)<br>······)<br>······)<br>······ |                     | 282.46 us<br>282.47 us<br>282.47 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.47 us |
| 1.54<br>1.85<br>2.16<br>2.47<br>2.78<br>3.09<br>3.40<br>3.71<br>4.02 | Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data<br>Std Data | 112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112 | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8      | CD F<br>CD F<br>CD F<br>CD F<br>CD F<br>CD F<br>CD F<br>CD F | 1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97<br>1 97 | E1 0)<br>E1 0)<br>E1 0)<br>E1 0)<br>E1 0)<br>E1 0)<br>E1 0)<br>E1 0)<br>E1 0)<br>E1 0)          | 1 9C<br>9C<br>9C<br>9C<br>9C<br>9C<br>9C<br>9C<br>9C<br>9C<br>9C<br>9C<br>9C | 07 7D<br>07 7D          | 38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5<br>38F5 | · · · · · · }<br>· · · · · · }<br>· · · · · }<br>· · · ·      |                     | 282.46 us<br>282.47 us<br>282.47 us<br>282.47 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.46 us<br>282.47 us<br>282.46 us<br>282.47 us<br>282.47 us |



# I<sup>2</sup>C 触发

### 启用 I<sup>2</sup>C 触发

到「硬件参数设置」选择「 $I^2C$  Trigger」,如下图所示。

| Mode                        | Min. S/R       | Max. S/R       | Available ch. | Min. Mem. | Max. Mem. 🔺  |
|-----------------------------|----------------|----------------|---------------|-----------|--------------|
| 🗐 800M                      | 800MHz         | 800MHz         | 9             | 256       | 8M           |
|                             | 400MHz         | 400MHz         | 18            | 256       | 4M           |
| + 🧰 200M                    | 1Hz            | 200MHz         | Adjustable    | 256       | Adjustable   |
| 🛨 🧰 UART Trigger            | Baud Rate x 16 | Baud Rate x 16 | Adjustable    | 256       | Adjustable   |
| 🛨 🧰 CAN Trigger             | Data Rate x 10 | Data Rate x 10 | Adjustable    | 256       | Adjustable   |
| 🖃 🔄 I2C Trigger             | 1Hz            | 200MHz         | Adjustable    | 256       | Adjustable   |
| — 🗒 Transitional Storage-32 | 200MHz         | 200MHz         | Fixed         | Auto      | Auto         |
| — 🗒 Transitional Storage-8  | 200MHz         | 200MHz         | Fixed         | Auto      | Auto         |
| – I2⊂ Trigger-36            | 1Hz            | 200MHz         | Adjustable    | 256       | 2M           |
| —Ⅲ I2⊂ Trigger-18           | 1Hz            | 200MHz         | Adjustable    | 256       | 4M           |
| —Ⅲ I2⊂ Trigger-12           | 1Hz            | 200MHz         | Adjustable    | 256       | 6M           |
| – I2⊂ Trigger-9             | 1Hz            | 200MHz         | Adjustable    | 256       | 8M           |
| –≝ I2⊂ Trigger-6            | 1Hz            | 200MHz         | Adjustable    | 256       | 12M          |
| └── I2⊂ Trigger-4           | 1Hz            | 200MHz         | Adjustable    | 256       | 18M          |
| + 🗭 125 Trinner             | 1Hz            | 200MHz         | Adjustable    | 256       | Adiustable 💻 |
| •                           |                |                |               |           |              |

#### 触发参数设置

按下「确定」后,点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触发条件」,点击「I<sup>2</sup>C 总线协议触发」,会出现如下图所示。

| I2C触发参数设置                   |                                              |                      | ×                        |
|-----------------------------|----------------------------------------------|----------------------|--------------------------|
| 通道设定 SCL 0                  | SDA 1                                        |                      | Start 💌                  |
| P1 💌                        | P2                                           | ▼ P3                 | ▼ P4 ▼                   |
| P5 🔽                        | P6                                           | ▼ P7                 | ▼ P8 ▼                   |
| P9                          | P10                                          | ▼ P11                | Y P12 Y                  |
| P13                         | P14                                          | ▼ P15                | ▼ P16 ▼                  |
| Timing Violation (Unit:ns / | Range;5~163840ns)<br>tsu;DAT 10<br>tHD;DAT 5 | E tSU;STO 160        | ☐ tlow 160<br>☐ thigh 60 |
| ▼ Pre-Trigger 「<br>         | Data match with P1 Addre                     | ss 🔲 Pass Count Type | Pass Count 0 🗧<br>通定 取消  |



通道设置:选择通道,I<sup>2</sup>C 需两个通道组成一个信号组。

#### 触发模式设置:

提供九种模式,供用户选择。

选择 Start 为触发条件。

选择 Re-Start 为触发条件。

选择 Start or Re-Start 为触发条件。

选择 Stop 为触发条件。

选择 Missing Ack 为触发条件,表示 Not Acknowledge(NACK)。以上五种模式,

若触发成功后,光标 T 停在前缘。

| 3.5 | 51 ms | . 4<br>. 1 . | 63.591 n   | ns 4<br> | 63.631 m               | 15<br>  .   . | 46 |
|-----|-------|--------------|------------|----------|------------------------|---------------|----|
|     | s     |              | Ac         | ldr:45   |                        | Wr            |    |
|     | δu    | နံ့ပန်ပ      | နပန်ပန်ပုံ | ալեսեւ   | န်ပန်ပန်ပ              | iu iu         | 5u |
|     | 7u 12 | u –          | 35u        | 12u      | 1 <mark>2</mark> u 11u | 23u           |    |
|     |       |              |            |          |                        |               |    |

选择 Match Sequentially 为触发条件。

相当于「语句式连续条件触发」。由多个单阶式触发组合而成的触发条件,最多有 16 个阶层,每个阶层必须单独设置。



| I2C触发参数设置                      |                          |                         | ×                  |
|--------------------------------|--------------------------|-------------------------|--------------------|
| 通道设定 SCL 0                     | SDA 1                    | 触发模式设定                  | atch Sequently     |
| P1 Next                        | P2 ThenIf 💌              | P3 Next 💌               | P4 Next 💌          |
| P5 Next 💌                      | P6 ThenIf 💌              | P7 ThenIf               | P8 ThenIf 💌        |
| P9 ThenIf                      | P10 Next 💌               | P11 Next                | P12 Then Trigger 💌 |
| P13 Then Trigger 💌             | P14 Then Trigger 💌       | P15 Then Trigger        | P16 Then Trigger 💌 |
| Timing Violation (Unit:ns / Ra | nge:5~163840ns)          |                         |                    |
| LSU;STA 160                    | LSU;DAT 10               | LSU;STO 160             | LOW 160            |
| LHD;STA 160                    | thd;dat 5                | tBUF 500                | thigh 60           |
|                                |                          |                         | Í                  |
| - P1 - P2    P3 - P4 -         |                          | P9    P10 − P11 − P12 → |                    |
|                                |                          |                         |                    |
| = = = =                        | = = = =                  | = = = =                 |                    |
| XXh XXh XXh XXh                | XXXh XXXh XXXh XXXh      | xoxh xoxh xoxh xoxh     |                    |
|                                |                          |                         |                    |
| Pre-Trigger Da                 | ta match with P1 Address | Pass Count Type         | Pass Count 0       |
| 載入                             | 保存                       |                         | 确定取消               |

设置方式如下:

Address: Address 的部份有分析 Write Only、Read Only、Read or Write 以及

Include R/W in Address °

若 Address 有勾选时,则分析 Address。不勾选 Include R/W in Address 时,

Address 从 bit 1 开始 如下图是分析 Read or Write 的 Address 为 23h 师 8 bit

数值显示为 46h。

| I2C Value Setting                                                                                                                                                                                                                                                                                      | ×                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| ✓       Address (7-bit addressing)         ○       Write Only         ○       Read Only         ○       Read or Write         □       Include R/W in Address         7       6       5       4       3       2       1       R/W         0       1       0       0       1       1       X       = 46h | C heck Acknowledge |
| Data/Address         23h           © =         C >         C >=           C !=         C <                                                                                                                                                                                                             | OK                 |

勾选 Include R/W in Address 时, Address 从 bit R/W 开始, 如下图分析 Read or Write 的 Address 为 23h, 而 8 bit 数值显示为 23h。



| I2C Value Setting                                                                                                                                                                                                                                                                                      | ×                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| ✓       Address (7-bit addressing)         ○       Write Only         ○       Read Only         ○       Read or Write         ✓       Include R/W in Address         7       6       5       4       3       2       1       R/W         0       0       1       0       0       1       X       = 23h | Check Acknowledge |
| Data/Address 23h                                                                                                                                                                                                                                                                                       | OK                |

若 Address 没有勾选时,则分析 Data。如下图是分析 Data 为 12h。

| I2C Value Setting                                                                                                                                                                                                | ×                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| <ul> <li>Address (7-bit addressing)</li> <li>○ Write Only</li> <li>○ Read Only</li> <li>○ Read or Write</li> <li>□ Include R/W in Address</li> <li>7 6 5 4 3 2 1 R/W</li> <li>○ X X X X X X X X = 00h</li> </ul> | Check Acknowledge |
| Data/Address 12h                                                                                                                                                                                                 | OK<br>Cancel      |

#### **Check Acknowledge:**

Check Acknowledge 的部份有分析 ACK(Acknowledge)、NACK(Not

Acknowledge)。若没有勾选时,表示 Don't care,任两个皆可。

**Data/Address:** 输入 Data 或是 Address 的数据,输入方式包含二进位码、十六 进位码,例如:00010010b 或是 12h。除此之外,还有 Don't care 的功能,例如: 找出 10h 20h 30h 的数据,可以设置成 X0h或是 00XX0000b(X or x Don't care)。 还可以设置成「=」:等于、「>」:大于、「>=」:大于等于、「!=」:不等 于、「<」:小于、「<=」:小于等于。

在设置的同时,下方有示意图供使用者参考。若 Write or Read 的 Address 触发成功,光标 T 会停在后缘。



| 3 ms  | 463.583 ms             | 463.62       | 3 ms       | 463.66  | 53 |
|-------|------------------------|--------------|------------|---------|----|
| s     |                        | Wr:12        |            |         |    |
| δu    | ခြပ်ခြုပ်ခြုပ်ခြုပ်ခြု | နှံပြန်ပြန်ပ | ၊နိပန်ပန်ပ | ခြံပြန် |    |
| 7u 12 | ບ 35ບ                  | 12u 12u      | 11u        | 23u     |    |
|       |                        |              |            |         |    |

选择 All Match 为触发条件:每个单阶设置的条件全部都要成立,相当于作 AND 运算。当第一组条件(P1)设置为 Address 后,后面所有的条件都必须是 Address。第一组条件(P1)设置为 Data 后,后面所有的条件都必须是 Data。例 如:请看下图的示意图。

| I2C触发参数设置                                                                                              |                           |                     | ×                       |
|--------------------------------------------------------------------------------------------------------|---------------------------|---------------------|-------------------------|
| 通道设定 SCL 0                                                                                             | SDA 1                     | 触发棋式设定              | All Match               |
| P1 Used 💌                                                                                              | P2 Used                   | P3 Unused           | ▼ P4 Unused ▼           |
| P5 Unused 💌                                                                                            | P6 Unused                 | P7 Unused           | P8 Unused               |
| P9 Unused 💌                                                                                            | P10 Unused                | P11 Unused          | P12 Unused              |
| P13 Unused 💌                                                                                           | P14 Unused                | P15 Unused          | ▼ P16 Unused ▼          |
| Timing Violation (Unit:ns / F<br>tSU;STA 160<br>tHD;STA 160<br>P1 P2<br>D D<br>= =<br>12h xXh<br>AC AC | Range:5~163840ns)         | ☐ tSU;STO 160       | thigh 60                |
| Pre-Trigger □ □<br>重设 载入                                                                               | Data match with P1 Addres | s 🔲 Pass Count Type | Pass Count 0 🗧<br>确定 取消 |

P1 为 Data > 30h、P2 为 Data < 40h。

触发后的结果,光标 T 同时满足 P1 及 P2 的条件。若 Data 触发成功,光标 T 会停在后缘。





选择 Any Match 为触发条件:设置方式跟 All Match 一样,但它是作 OR 运算,也就是每个单阶设置的条件,任一符合就成立。

选择 Timing Violation 为触发条件:提供八种设置时间的条件,若触发的时间 小于设置的值就触发,能有效地帮助使用者作验证,找出错误的地方。

补充说明,因为 Timing Violation 需要比较准确的验证,只允许在硬件设置为

200MHz Sample Rate 的时候才能使用。

| I2C触发参数设置           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | ×                |
|---------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|
| 通道设定 SCL            | 0 SDA                       | 1 触发模式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 设定 Timing Violation  | •                |
| P1                  | ▼ P2                        | ▼ P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ▼ P4                 | <b>v</b>         |
| P5                  | ▼ P6                        | ▼ P7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ▼ P8                 | ~                |
| P9                  | ▼ P10                       | ▼ P11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ▼ P12                | <b>v</b>         |
| P13                 | ▼ P14                       | ▼ P15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ▼ P16                | <b>v</b>         |
| Timing Violation (U | nit:ns / Range: 5~16384     | Ins)         Image: tsu;sto         Image: tsu;sto <th>160 🗖 tLOW</th> <th>160<br/>60</th> | 160 🗖 tLOW           | 160<br>60        |
| SDA                 | ← tLOW →← tHIGH →           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                  |
| SCL                 | thD;STA thD;                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                  |
| ✓ Pre-Trigger<br>重设 | □ Data match with<br>载入  保存 | P1 Address 🔲 Pass Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t Type Pass Count 确定 | 0 <u>日</u><br>取消 |







#### 红1:tSU;STA

由 Re-Start 开始的时间(此时 SCL 为 High)往前找,直到 SCL 跳变(此时 SCL 为 Low) 的这段时间就是 Re-Start 的 Setup Time。跳变:Low to High 或 High to Low。

#### 蓝 2:tHD;STA

由 Re-Start 开始的时间(此时 SCL 为 High)往后找,直到 SCL 跳变(此时 SCL 为 Low) 的这段时间就是 Re-Start 的 Hold Time。

#### 蓝 3:tSU;DAT

由 SCL 上升沿的时间(此时 Latch 到的 Data 为 X)往前找,直到 SDA 跳变

(Data 为 X 的反相)的这段时间就是 Data 的 Setup Time。X:0 或 1。

#### 红4:tHD;DAT

由 SCL 下降沿的时间(此时 Latch 到的 Data 为 X)往后找,直到 SDA 跳变

(Data 为 X 的反相)的这段时间就是 Data 的 Hold Time。

#### 红 5:tSU;STO

由 Stop 开始的时间(此时 SCL 为 High)往前找,直到 SCL 跳变(此时 SCL 为 Low)的这段时间就是 Stop 的 Setup Time。

#### 蓝 6:tBUF

Start 和 Stop 之间的时间就是 Bus Free Time。

#### 红7:tLOW

SCL 在 Low 的期间。

#### 蓝 8:tHIGH



SCL 在 High 的期间。

下图是寻找 tSU;STA 为 8005ns 的例子,光标 TA 之间的时间为 8us(8000ns < 8005ns),确实触发成功。



Pass Count: I<sup>2</sup>C Trigger Pass Count 功能有较特殊的条件,下图的示意图,表示 P1 和 P2 为连续触发,P2 和 P3 为非连续触发,若执行 Pass Count,程序会 在最后一个非连续的地方跑循环,以下图来说,会在 P3 跑循环,总共要忽略三 次,到第四次才会触发成功。

| P1   | P2      | P3  | l,                         |                 |            |     |
|------|---------|-----|----------------------------|-----------------|------------|-----|
| A    | D       | D   |                            |                 |            |     |
| RD   |         |     |                            |                 |            |     |
| =    |         | =   |                            |                 |            |     |
| 12h  | 6Sh     | 21h |                            |                 |            |     |
| AC   | AC      | AC  |                            |                 |            |     |
| Pre- | Trigger | Г   | Data match with P1 address | Pass Count Type | Pass Count | 3 1 |

Pass Count Type: 表示循环会从头开始跑。下图的示意图表示,不管中间是否有

连续或不连续,一切从头开始跑循环。

|   | P1   | P2      | P3  | 1,                         |                 |            |     |
|---|------|---------|-----|----------------------------|-----------------|------------|-----|
|   | А    | D       | D   |                            |                 |            |     |
|   | RD   |         |     |                            |                 |            |     |
|   | =    |         | =   |                            |                 |            |     |
|   | 12h  | 65h     | 21h |                            |                 |            |     |
|   | AC   | AC      | AC  |                            |                 |            |     |
| F | Pre- | Trigger | Г   | Data match with P1 address | Pass Count Type | Pass Count | 3 + |

Data match with P1 address: 仅限跟 Match Sequentially 搭配使用,表示要触发



的数据跟随着 P1 的 address。而且第一阶触发(P1)参数必须设置成 Address,功能才会开启。

将已经设置的触发项目全部保存或是加载先前保存的触发文档。



### 采集波形

# 按下「开始采集」钮。

| Time/Div: 50 us                                                                 | <b>7</b>              |                |                                                  |        |         |       |             |          |        |                  |                          |                     |
|---------------------------------------------------------------------------------|-----------------------|----------------|--------------------------------------------------|--------|---------|-------|-------------|----------|--------|------------------|--------------------------|---------------------|
| Acquired: 08:00:0                                                               | 0.0 46                | 3.604 ms       | 463.68                                           | 34 ms  | 463.7   | 54 ms | 463.84      | 4 ms     | 463.9  | 24 ms            | 464.004 ms 46            | 4.084 ms 464.164 ms |
| 12C 0 S                                                                         |                       | Addr:45        | <mark>                                   </mark> | •••• [ | t 0<br> |       | A<br>   35u | sr<br>I  | Addr:4 |                  | A 04                     |                     |
| 15                                                                              |                       | П П,           | 3                                                | 17     | 9       |       | 4211        | :<br>הרר | 8      | 2311             | 4211 5211                | 3511 3311 2411      |
| 120                                                                             |                       |                |                                                  | 12     | 30      |       |             |          |        |                  |                          |                     |
| Label Ch                                                                        | hannel 🔟              |                |                                                  |        |         |       |             |          |        |                  |                          | •                   |
| CH-00         CH-00           CH-01         CH-00           CH-01         CH-00 |                       | (I2C)          |                                                  | -      |         |       |             |          |        |                  |                          |                     |
| Sample                                                                          | Status                | Addr           | DO                                               | Dl     | D2      | D3    | D4          | D5       | D6     | D7               | ASCII                    | Information 🔺       |
| 457550                                                                          | Start                 | Wr 45          | 4D                                               | 03     | 10      | 00    | 28          |          |        |                  | M (                      |                     |
| 463551                                                                          | Start                 | Wr 45          | 01                                               |        |         |       |             |          |        |                  |                          |                     |
| 463857                                                                          | Repeat Start          | Rd 45          | 04                                               | 4D     | 10      | 4E    | 09          |          |        |                  | .M.N.                    |                     |
| 469762                                                                          | Start                 | Wr 45          | 4D                                               | 03     | 10      | 00    | 73          |          |        |                  | Ms                       |                     |
| 475708                                                                          | Start                 | Wr 45          | 01                                               |        |         | -     |             |          |        |                  | •                        |                     |
| 476018                                                                          | Repeat Start          | Rd 45          | 04                                               | 4D     | 10      | 4E    | AO          |          |        |                  | .M.N.                    |                     |
| 482008                                                                          | Start                 | Wr 45          | 40                                               | 03     | 10      | 00    | 42          |          |        |                  | мв                       |                     |
| 488028                                                                          | Start<br>Depost Stort | WE 45          | 04                                               | 4D     | 10      | 45    | OR          |          |        |                  | M N                      |                     |
| 400337                                                                          | Stort                 | Ru 45<br>Ur 45 | 4D                                               |        | 10      | 46    | 05          |          |        |                  | . F1. IV.<br>M           |                     |
| 500190                                                                          | Start                 | Wr 45          |                                                  | 0.5    | 10      | 00    | or          |          |        |                  |                          |                     |
| 500562                                                                          | Reneat Start          | Rd 45          | 04                                               | 4D     | 10      | 4E    | 00          |          |        |                  | . M. N.                  |                     |
| 506481                                                                          | Start                 | Wr 45          | 4D                                               | 03     | 10      | 00    | BO          |          |        |                  | M                        |                     |
| 512509                                                                          | Start                 | Wr 45          | 01                                               |        | 10      |       | 20          |          |        |                  |                          |                     |
| 512803                                                                          | Repeat Start          | Rd 45          | 04                                               | 4D     | 10      | 4E    | OD          |          |        |                  | .M.N.                    | -                   |
| •                                                                               |                       |                |                                                  |        |         |       |             |          |        |                  |                          | •                   |
|                                                                                 |                       |                |                                                  |        |         | ;     | 1           | 80.39    | 9 ms   | <mark>8</mark> 1 | 98.351 ms <mark>8</mark> | 17.952 ms 🕒 🔟 🇰     |



# I<sup>2</sup>S 触发

### 启用 I<sup>2</sup>S 触发

到「硬件参数设置」选择「I<sup>2</sup>S Trigger」,如下图所示。

| Mode                       | Min. S/R       | Max. S/R       | Available ch. | Min. Mem. | Max. Mem. 🔺 |
|----------------------------|----------------|----------------|---------------|-----------|-------------|
| 🗐 400M                     | 400MHz         | 400MHz         | 18            | 256       | 4M          |
| 🛨 🧰 200M                   | 1Hz            | 200MHz         | Adjustable    | 256       | Adjustable  |
| 🛨 🧰 UART Trigger           | Baud Rate × 16 | Baud Rate x 16 | Adjustable    | 256       | Adjustable  |
| 🛨 🧰 CAN Trigger            | Data Rate x 10 | Data Rate x 10 | Adjustable    | 256       | Adjustable  |
| 🛨 🧰 I2C Trigger            | 1Hz            | 200MHz         | Adjustable    | 256       | Adjustable  |
| – 🔄 I2S Trigger            | 1Hz            | 200MHz         | Adjustable    | 256       | Adjustable  |
| —🗐 Transitional Storage-32 | 200MHz         | 200MHz         | Fixed         | Auto      | Auto        |
| —🗐 Transitional Storage-8  | 200MHz         | 200MHz         | Fixed         | Auto      | Auto        |
| -🗐 I25 Trigger-36          | 1Hz            | 200MHz         | Adjustable    | 256       | 2M          |
| —🗐 I2S Trigger-18          | 1Hz            | 200MHz         | Adjustable    | 256       | 4M          |
| -🗐 I25 Trigger-12          | 1Hz            | 200MHz         | Adjustable    | 256       | 6M          |
| —🗐 I25 Trigger-9           | 1Hz            | 200MHz         | Adjustable    | 256       | 8M          |
| —🗐 I25 Trigger-6           | 1Hz            | 200MHz         | Adjustable    | 256       | 12M         |
| 🖃 I25 Trigger-4            | 1Hz            | 200MHz         | Adjustable    | 256       | 18M         |
| 🗐 SPI Trigger(800M)-9      | 800MHz         | 800MHz         | 9             | 256       | 8M          |

#### 触发参数设置

按下「确定」后,点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触发条件」,点击「I<sup>2</sup>S 总线协议触发」,会出现如下图所示。

| I2S触发参数设置          |          |              |             | ×        |
|--------------------|----------|--------------|-------------|----------|
| _ 通道設定             |          |              |             |          |
| SCK 0              | WS 1     |              | SD 2        |          |
| 数据宽度 8             | ▼ Bits   | 满格电压值        | 2000        | mV       |
| 触发方式 Data M        | 1atch    |              |             | •        |
| 通道选择 💽 E           | Both C   | Left         | 🔿 Right     |          |
| 数据格式 📀 🕻           | /alue 🤇  | Voltage      | 🔿 dB        |          |
| Pattern A          | 00h      | Pattern      | B 00h       | ]        |
| • = • • !=         | 0 < 0 >  | 🔘 In Range   | O Out Range | 2        |
| Duration(# of fram | mes) 1   |              |             |          |
| Timing Violation   |          |              |             |          |
| Default Settings   | 🖲 Master | C Slave      | C Custom    |          |
| SCK Period Min.    | 360 ns   | SCK Period M | ax, 440     | ns       |
| SCK High Duty Min. | 160 ns   | SCK Low Duty | y Min. 160  | ns       |
| Setup Time         | 0 ns     | Hold Time    | 100         | ns       |
| Pre-Trigger        | F        | Pass Count:  | 0 ÷         |          |
|                    | 载入       | / 保存   [     |             | <b>й</b> |
|                    |          |              |             | -        |



通道设置:选择通道,I<sup>2</sup>S 需三个通道组成一个信号组(SCK, WS, SD)。

数据宽度: 设置触发数据的位数, 1-32(bits), 通常为 8, 12, 16, 24, 32。

通道选择:可选择 Both, Left, Right 声道来触发。

数据格式:设置触发的数值时可选择使用 Value, Voltage, dB 三种方式来输入设置值。

选择 Value 时:直接输入 I<sup>2</sup>S 数值。

选择 Voltage 时:需要在满格电压值的字段里先输入以电压的最大值,触发的范围由负满格电压值到正满格电压值之间。

选择 dB 时:直接输入欲触发的衰减 dB 值。

当数据格式选择 Value 时 Pattern 中的数值可输入十六进制或十进制。十六进制时后面需加一个"h",十进制则不用任何辨识符号。例如:65(十进制)及 41h(十六进制)。

触发方式选择 Data Match 时可以设置不同的条件来进行触发,如:=(等于),!=(不 等于),<(小于),>(大于),In Range(Pattern A及 Pattern B之间),Out Range(Pattern A及 Pattern B之外)。

Duration(# of frames),与 Pass count 不同,此参数是指连续且不中断的符合触发条件时就触发,可输入范围1~65536。

触发方式

Data Match:音频数据值的比对,信号符合条件时即触发。

Rising Edge:上升沿触发,比较相同声道中的连续两个信号,后面的信号比前面的信号还大并且相差值超出设置值即触发。

Falling Edgd:下降沿触发,比较相同声道中的连续两个信号,后面的信号比前面的信号还小并且相差值超出设置值即触发。

Glitch:毛刺触发,针对讯号突然上升/下降后马上下降/上升形成一个毛刺时使用,当信号突然上升/下降的幅度超过设置值即触发。







Timing Violation:间检查,提供六种设置时间的条件,当六种设置条件中的任一条件符合时就触发,能有效地帮助使用者作验证,找出错误的地方。

补充说明,因为 Timing Violation 需要比较准确的验证,只允许在硬件设置为

200MHz Sample Rate 的时候才能使用。

Master:缺省 Master 时的建议值。

Slave:缺省 Slave 时的建议值。

Custom:可自定义时间检查的参数。

SCK Period Min.:当 Clock 的周期小于设置值就触发。

SCK Period Max.:当 Clock 的周期大于设置值就触发。

SCK High Duty Min.:当 Clock High 小于设置值的时间就触发。

SCK Low Duty Min.:当 Clock Low 小于设置值的时间就触发。

Setup Time:由 Clock 边化缘往前找,直到 Data 跳变为止的这段时间就是 Setup

Time,当 Setup Time 小于设置值就触发。

Hold Time:由 Clock 边化缘往后找,直到 Data 跳变为止的这段时间就是 Hold



Time,当 Hold Time 小于设置值就触发。



### 采集波形

按下「开始采集」钮。

| Time/Div: 2.048                                                                 |                            |                      |            |          |                   |           |         |             |               |                                                             |
|---------------------------------------------------------------------------------|----------------------------|----------------------|------------|----------|-------------------|-----------|---------|-------------|---------------|-------------------------------------------------------------|
| Acquired: 10:21                                                                 | -19.661 ms -1              | .6.384 ms            | -13.107 ms | -9.83 ms | : -6.554<br>      | ims -3.1  | 277 ms  | <u></u> ‡ 1 | 3.277 ms      | 6.554 ms                                                    |
|                                                                                 | Max: 52422<br>Min: -507840 | $\overline{\langle}$ | $\searrow$ | $\wedge$ | $\frown$          |           |         | 1           |               | 500000<br>300000<br>-100000<br>-300000                      |
| I2S_Wave 02                                                                     | Max: 524272                |                      |            |          |                   |           |         |             |               | 500000 -<br>300000 -<br>-100000 -<br>-300000 -<br>-300000 - |
| Label Chan                                                                      | •                          |                      |            |          |                   |           |         |             | .02.45 001001 | • • • • • • • • • • • • • • • • • • •                       |
| CH-00         CH-00           CH-01         CH-00           CH-01         CH-00 | <b>AA )800X</b> [125       | 6_Wave(I2S)          | ) 🔻        |          |                   |           |         |             |               |                                                             |
| Sample                                                                          | Status(20Bits)             | DO                   | Dl         | D2       | D3                | D4        | D5      | D6          | D7            | ASCII(DO-D 🔺                                                |
| -2206889                                                                        | Data                       | R:01920              | L:02430    | R:02430  | L:03140           | R:03140   | L:04040 | R:04040     | L:05140       |                                                             |
| -2187688                                                                        | Data                       | R:05140              | L:06420    | R:06420  | L:07900           | R:07900   | L:08FC0 | R:08FC0     | L:0A860       |                                                             |
| -2168486                                                                        | Data                       | R:0A860              | L:0C2D0    | R:0C2D0  | L:0DF20           | R:0DF20   | L:0FD40 | R:0FD40     | L:11D20       |                                                             |
| -2149285                                                                        | Data                       | R:11D20              | L:13ECO    | R:13EC0  | L:16210           | R:16210   | L:18710 | R:18710     | L:1ADB0       |                                                             |
| -2130084                                                                        | Data                       | R:1ADB0              | L:1D5E0    | R:1D5E0  | L:1FFB0           | R:1FFB0   | L:22B00 | R:22B00     | L:257C0       |                                                             |
| -2110883                                                                        | Data                       | R:257C0              | L:285F0    | R:285F0  | L:2B590           | R:2B590   | L:2E670 | R:2E670     | L:318B0       |                                                             |
| -2091681                                                                        | Data                       | R:318B0              | L:34C20    | R:34C20  | L:380C0           | R:380C0   | L:3B690 | R:3B690     | L:3ED60       |                                                             |
| -2072480                                                                        | Data                       | R:3ED60              | L:42540    | R:42540  | L:45E20           | R:45E20   | L:497F0 | R:497F0     | L:4D290       |                                                             |
| -2053279                                                                        | Data                       | R:4D290              | L:50E00    | R:50E00  | L:54A30           | R:54A30   | L:58710 | R:58710     | L:5C490       |                                                             |
| -2034078                                                                        | Data                       | R:5C490              | L:60290    | R:60290  | L:64120           | R:64120   | L:68020 | R:68020     | L:6BF80       |                                                             |
| -2014877                                                                        | Data                       | R:6BF80              | L:6FF40    | R:6FF40  | L:73F30           | R:73F30   | L:77F50 | R:77F50     | L:7BF90       |                                                             |
| -1995675                                                                        | Data                       | R:78F90              | L:7FFF0    | R:7FFF0  | L:84040           | R:84040   | L:88080 | R:88080     | L:8C0A0       | •                                                           |
| •                                                                               |                            |                      |            |          |                   |           |         |             |               | •                                                           |
|                                                                                 |                            |                      |            |          | <mark>.</mark> -2 | 22.908 ms | B -2    | 3.04 ms 🖁   | -131          | .75 us 🕒 🖽 🎁                                                |



| Time/Div: | 16 us <mark>U</mark> |           |          |          |          | <b>I</b> |          |          |                      |              |
|-----------|----------------------|-----------|----------|----------|----------|----------|----------|----------|----------------------|--------------|
| Acquired: | 10:21                | -102.4 us | -76.8 us | -51.2 us | -25.6 us |          | 25.6 us  | 51.2 us  | 76.8 us              | 102.4 us     |
|           |                      | L:B2D40   | R:B2D40  | L:B67E0  | R:B67E0  | L:BA1B0  | R:BA1B0  | L:BDA90  | R:BDA90              | L;C1270      |
| I2S_Data  | o sci                |           |          |          |          |          |          |          |                      |              |
|           | 1 W9                 | 24u       | 24u      | 24u      | 24u      | 24       | 24.01u   | 24u      | 24u                  | 24u          |
|           | 2 SD                 | 80 100    | 10u      |          | י<br>פי  |          |          |          |                      |              |
| Label     | Chan                 | •         |          |          |          |          |          |          |                      |              |
|           | 00 CH-00<br>01 CH-00 |           |          | 7        |          |          |          |          |                      |              |
| Sample    |                      | I2S_Data  |          |          |          |          |          |          |                      | <b>_</b>     |
| 25253     |                      | R:CB3B0   |          |          |          |          |          |          |                      |              |
| 27653     |                      | L:CE720   |          |          |          |          |          |          |                      |              |
| 30053     |                      | R:CE720   |          |          |          |          |          |          |                      |              |
| 32453     |                      | L:D1960   |          |          |          |          |          |          |                      |              |
| 34854     |                      | R:D1960   |          |          |          |          |          |          |                      |              |
| 37254     |                      | L:D4A40   |          |          |          |          |          |          |                      |              |
| 39654     |                      | R:D4A40   |          |          |          |          |          |          |                      |              |
| 42054     |                      | L:D79E0   |          |          |          |          |          |          |                      |              |
| 44454     |                      | R:D79E0   |          |          |          |          |          |          |                      |              |
| 46854     |                      | L:DA810   |          |          |          |          |          |          |                      |              |
| 49255     |                      | R:DAGIU   |          |          |          |          |          |          |                      |              |
| 31035     |                      | 1:00400   |          |          |          |          |          |          |                      |              |
|           |                      |           |          |          |          |          |          |          |                      |              |
|           |                      |           |          |          |          | -22.9    | 908 ms 📕 | -23.04 n | ns <mark>A</mark> -1 | 31.75 us 🕒 🗐 |



### SPI 触发

#### 启用 SPI 触发

到「硬件参数设置」选择「SPI Trigger」,如下图所示。采样率范围从 1Hz 到 200MHz,实际使用的内存深度根据您的需求调整。**此模式 SPI Trigger 采样率** 最高为 200MHz。如需更高的采样率,则请选择 SPI Trigger(800M)-9 模式。也就 是使用采样率 800MHz.9 通道模式。此模式下,因为采样率较高,使用者只能使 用默认的通道设置参数,不可变更。

| Mode                        | Min. S/R       | Max. S/R       | Available ch. | Min. Mem. | Max, Mem. 🔺  |
|-----------------------------|----------------|----------------|---------------|-----------|--------------|
| 🛨 🦲 UART Trigger            | Baud Rate x 16 | Baud Rate x 16 | Adjustable    | 256       | Adjustable   |
| 🛨 🧰 CAN Trigger             | Data Rate x 10 | Data Rate x 10 | Adjustable    | 256       | Adjustable   |
| 🛨 🧰 I2C Trigger             | 1Hz            | 200MHz         | Adjustable    | 256       | Adjustable   |
| 🛨 🧰 I25 Trigger             | 1Hz            | 200MHz         | Adjustable    | 256       | Adjustable   |
| 🗐 SPI Trigger(800M)-9       | 800MHz         | 800MHz         | 9             | 256       | 8M           |
| 🖃 💼 SPI Trigger             | 1Hz            | 200MHz         | Adjustable    | 256       | Adjustable   |
| — 🗒 Transitional Storage-32 | 200MHz         | 200MHz         | Fixed         | Auto      | Auto         |
| — Transitional Storage-8    | 200MHz         | 200MHz         | Fixed         | Auto      | Auto         |
| –) SPI Trigger-36           | 1Hz            | 200MHz         | Adjustable    | 256       | 2M           |
| - 🗐 SPI Trigger-18          | 1Hz            | 200MHz         | Adjustable    | 256       | 4M           |
| - 🗐 SPI Trigger-12          | 1Hz            | 200MHz         | Adjustable    | 256       | 6M           |
| - 🗐 SPI Trigger-9           | 1Hz            | 200MHz         | Adjustable    | 256       | 8M           |
| –) = SPI Trigger-6          | 1Hz            | 200MHz         | Adjustable    | 256       | 12M          |
| 🖃 SPI Trigger-4             | 1Hz            | 200MHz         | Adjustable    | 256       | 18M          |
| + 🔁 SVID Trinner            | 1Hz            | 200MHz         | Adjustable    | 256       | Adiustable 💻 |
|                             |                |                |               |           |              |

#### 触发参数设置

按下「确定」后,点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触发条件」,点击「SPI 总线协议触发」,会出现如下图所示。

| SPI触发参数设置       |                              |                              |          | ×  |
|-----------------|------------------------------|------------------------------|----------|----|
| Channel         | Chip Select                  | Trigger Value                | Then     |    |
| SCK 1           | Clock Latch Data             | After CS                     | After CS |    |
| SDA 2           | Rising Edge     Falling Edge | After CS                     | Then     |    |
| Word Size Setup | ▼ © MSB ⊂ LSB                | OR IF     After CS     OR IF | After CS |    |
| Pre-Trigger     | Pass Count 0                 | After C5                     | After C5 |    |
|                 |                              |                              |          |    |
| 触发参数检查          | 载入    保存                     |                              | 研定       | 取消 |

Channel: 选择通道, SPI 触发需三个通道组成一个信号组。

Chip Select: 决定片选信号为低电压或高电压,缺省为低电压。



Clock Latch Data: 决定数据采集的方式,缺省为上升沿。 Word Size Setup: 设置数据的位数,4-24(bits)。缺省为 8 bits。 MSB/LSB: 传送方式,先传送高位或低位。缺省为高位。 Trigger Value: 设置触发的条件,输入方式包含字、字符串、十进位码或十六进 位码。其中字及字符串必须用单引号「'」及双引号「"」括起来,例如字'A'或是 字符串"Acute" 410 进位码及 16 进位码则是以 10 进制及 16 进制表示 '例如字'A', 则设置成 65 及 41h。字符串可以累加,如字符串"Acute"可以设置成'A' "cute" 或是'A' 63h 'u' 't' 65h,每个字与字间要加一个空白。

注意:每个字符串长度最大到 16 个字。

IF-Then 是触发的条件式,如 IF a Then b 则表示 a 成立后,b 也要成立,满足条件式即触发成功。本功能提供四个 IF-Then 给使用者使用,四个 IF 任一成立即可触发。

Pass Count: SPI Trigger Pass Count 功能有较特殊的条件,以下图为例, IF 条件 任一成立就算一次,达到五次之后,下一次不管是 DDh 或是 98h 出现,哪个 先出现就先触发。

| SPI触发参数设置                                                  | ×                                                                              |
|------------------------------------------------------------|--------------------------------------------------------------------------------|
| Channel Chip Select<br>CS 0 Chatter Low C Active High      | Trigger Value                                                                  |
| SDA 2 Clock Latch Data<br>SDA 2 Rising Edge C Falling Edge | Image: OR IF     98h     Image: Then       Image: After CS     Image: After CS |
| Word Size 8  Word Size 8  Word Size 8                      | After CS After CS OR IF Of the CS Of the CS Of the CS                          |
| Pre-Trigger Pass Count                                     |                                                                                |
|                                                            |                                                                                |
| SDA 98h                                                    |                                                                                |
|                                                            |                                                                                |
|                                                            | [ 調定 ] 取消                                                                      |

其中 After CS 没有勾选,表示当 CS 致能时,不管前后顺序,SDA 只要有 DDh 或是 98h 出现,就触发。



如果勾选 After CS,如下图,表示当 CS 致能时,SDA 的第一笔数据为 DDh 就

触发。

| SPI触发参数设置            |                          |               |     |               | ×    |
|----------------------|--------------------------|---------------|-----|---------------|------|
| Channel Chip Sele    | ect                      | Trigger Value |     | _             |      |
| CS 0 CS Activ        | ve Low C Active High     | IF            | DDh | Then After CS |      |
| SCK 1 Clock Lat      | tch Data                 |               |     |               |      |
| SDA 2 O Risin        | ng Edge 🛛 🔿 Falling Edge | After CS      | 98h | After CS      |      |
| -Word Size Setup     |                          | OR IF         |     | Then          |      |
| Word Size 8          | • MSB CLSB               | After CS      |     | After CS      |      |
| _                    |                          | After CS      |     | After CS      |      |
| I Pre-Trigger Pass C | Count   5 🚔              |               |     |               |      |
| <u>ट</u>             |                          |               |     |               |      |
|                      |                          |               |     |               |      |
|                      |                          |               |     |               |      |
| SCKBck<br>SDA98h     |                          |               |     |               |      |
|                      |                          |               |     |               |      |
|                      |                          |               |     |               |      |
|                      |                          |               |     |               |      |
|                      |                          |               |     |               |      |
|                      |                          |               |     |               |      |
| <u>触发参数检查</u> 载入     | 保存                       |               |     | <b>〔</b> 确    | 定 取消 |

另外一种例子如下图,第一个 IF 条件式中,DDh 及 A2h 之间是非连续的,所

以当 DDh 找到之后,后面有出现 A2h,则触发条件成立。或是第二个 IF 条件

成立,则触发条件成立。触发条件成立达五次,下一次触发条件成立即触发。

| SPI触发参数设置                                                                                                                                                                      | <u>×</u>         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Channel Chip Select                                                                                                                                                            | Trigger Value    |
| CS 0 Active Low C Active High                                                                                                                                                  | DDh After CS A2h |
| SCK 1 Clock Latch Data                                                                                                                                                         | OR IF 98h        |
| SDA 12 O Rising Edge O Falling Edge                                                                                                                                            | After CS         |
| Word Size Setup                                                                                                                                                                |                  |
|                                                                                                                                                                                |                  |
| ✓ Pre-Trigger Pass Count 5                                                                                                                                                     | L After CS       |
| CS L <sub>H</sub> <u>h</u><br>SCK <sub>H</sub> <u>Belk<br/>SDA H</u> <u>DDh H</u> A2h<br>CS L <sub>H</sub> <u>Belk</u><br>SCK <sub>H</sub> <u>Belk</u><br>SDA <sub>H</sub> 98h |                  |
| 触发参数检查    载入    保存                                                                                                                                                             | 爾定即消             |

**触发参数检查:**帮助检查输入的字符串是否合乎规定,例如字符串超过 16 个字, 将超过的部份截断。



### 采集波形

| 安下「开始                          | 采集」钮。               |          |       |         |       |         |       |             |                    |              |                  |
|--------------------------------|---------------------|----------|-------|---------|-------|---------|-------|-------------|--------------------|--------------|------------------|
| Time/Div: 250 😝                |                     |          |       |         |       |         |       |             |                    |              |                  |
| Acquired: 08:0                 | 2.557 ms 2.557 r    | ms<br>I. | 2.558 | ms<br>I | 2.558 | ms<br>I | 2.559 | ms<br>      | 2.559              | ms 2.559 ms  | 2.56 ms          |
| 1 CS                           | Х Idle 0 08 00 80 6 | 57 00    | 00    | 00      |       | 00      | ••    | 00 <b>0</b> | 00 <mark>00</mark> |              | ( Idle ) 08 00 - |
| 0 SDI                          | 150n                |          |       |         | 2     | .928u   |       |             |                    |              | 152.5n           |
| 2 SDO                          | 172.5n              |          |       |         |       |         |       | 2.47u       |                    |              |                  |
|                                |                     |          |       |         |       |         |       |             |                    |              | -                |
| Label Channel                  | 4                   |          |       |         |       |         |       |             |                    |              | •                |
| ⊙/Ⅲ CH-00 CH-00<br>CH-01 CH-00 | SPI(SPI)            |          | •     | ]       |       |         |       |             |                    | -            |                  |
| Timestamp                      | Status(8 bits data) | DO       | D1    | D2      | D3    | D4      | D5    | D6          | D7                 | ASCII(DO-D7) | Informati 4      |
| 2.5566025 ms                   | Unknown             |          |       |         |       |         |       |             |                    |              |                  |
| 2.5567225 ms                   | Idle                |          |       |         |       |         |       |             |                    |              | Duration:        |
| 2.5569075 ms                   | Data                | OB       | 00    | BO      | 67    | 00      | 00    | 00          | 00                 | °g           |                  |
| 2.5582925 ms                   | Data                | 00       | 00    | 00      | 00    | 00      | 00    | 00          | 00                 |              |                  |
| 2.5596825 ms                   | Unknown             |          |       |         |       |         |       |             |                    |              |                  |
| 2.5598 ms                      | Idle                |          |       |         |       |         |       |             |                    |              | Duration:        |
| 2.559985 ms                    | Data                | OB       | 00    | BO      | 74    | 00      | 00    | 00          | 00                 | °t           |                  |
| 2.561375 ms                    | Data                | 00       | 00    | 00      | 00    | 00      | 00    | 00          | 00                 |              |                  |
| 2.5627625 ms                   | Data                | 00       | 00    | 00      | 00    | 00      | 00    | 00          | 00                 |              |                  |
| 2.5641525 ms                   | Data                | 00       | 00    | 00      | 00    | 00      | 00    |             |                    |              |                  |
| 2.5651925 ms                   | Unknown             |          |       |         |       |         |       |             |                    |              |                  |
| 2.5653125 ms                   | Idle                |          |       |         |       |         |       |             |                    |              | Duration: .      |
| •                              |                     |          |       |         |       |         |       |             |                    |              | Þ                |
|                                |                     |          |       |         | 1     |         | 6     | 31002       |                    | 1855771      | 2486773          |



# SVID 触发 (Upon Request)

#### 启动 SVID 触发

到「硬件参数设置」选择「SVID Trigger」,如下图所示。

| Mode                                 | Min. S/R       | Max. S/R       | Available ch. | Min. Mem. | Max. Mem.  |
|--------------------------------------|----------------|----------------|---------------|-----------|------------|
| + 🧰 CAN Trigger                      | Data Rate x 10 | Data Rate x 10 | Adjustable    | 256       | Adjustable |
| 🕂 🚞 I2C Trigger                      | 1Hz            | 200MHz         | Adjustable    | 256       | Adjustable |
| 🛨 🧰 I2S Trigger                      | 1Hz            | 200MHz         | Adjustable    | 256       | Adjustable |
| SPI Trigger(800M)-9                  | 800MHz         | 800MHz         | 9             | 256       | 8M         |
| 🛨 🧰 SPI Trigger                      | 1Hz            | 200MHz         | Adjustable    | 256       | Adjustable |
| 🖃 🔄 SVID Trigger                     | 1Hz            | 200MHz         | Adjustable    | 256       | Adjustable |
| —🗐 Transitional Storage-32           | 200MHz         | 200MHz         | Fixed         | Auto      | Auto       |
| —🗐 Transitional Storage-8            | 200MHz         | 200MHz         | Fixed         | Auto      | Auto       |
| ──────────────────────────────────── | 1Hz            | 200MHz         | Adjustable    | 256       | 2M         |
| ──────────────────────────────────── | 1Hz            | 200MHz         | Adjustable    | 256       | 2M         |
| ──────────────────────────────────── | 1Hz            | 200MHz         | Adjustable    | 256       | 2M         |
| -Ⅲ SVID Trigger-9                    | 1Hz            | 200MHz         | Adjustable    | 256       | 2M         |
| -Ⅲ SVID Trigger-6                    | 1Hz            | 200MHz         | Adjustable    | 256       | 2M         |
| _ [≕] SVID Trigger-4                 | 1Hz            | 200MHz         | Adjustable    | 256       | 2M         |

If you have any issues with SVID protocol features, please contact your Intel

#### Field Representative.

#### 触发参数设置

按下「确定」后,点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触

| SVID触发参数设置              |                  |                |                |                |               |              | × |
|-------------------------|------------------|----------------|----------------|----------------|---------------|--------------|---|
| 通道设置 SCLK 🛛             | SDATA 1          | ALERT 2        | 角虫;            | 发模式设置 Start    |               | •            |   |
| Address                 | Command          | Master Payload | When Alert     | ACK            | Slave Payload | Trigger      |   |
| P1 XXh Don't care 💌 😑   | XXh Don't care 💌 | XXh            | X Don't care 💌 | X Don't care 💌 | XXh           | Then Trigger | ~ |
| P2 XXh Don't care 💌 😑   | XXh Don't care 💌 | XXh            | X Don't care 💌 | X Don't care 💌 | XXh           | Then Trigger | ~ |
| P3 XXh Don't care 💌 😑   | XXh Don't care 💌 | XXh            | X Don't care 💌 | X Don't care 💌 | XXh           | Then Trigger | ~ |
| P4 XXh Don't care 💌 😑   | XXh Don't care 💌 | XXh            | X Don't care 💌 | X Don't care 💌 | XXh           | Then Trigger | ~ |
|                         |                  |                |                |                |               |              |   |
| ✓ Pre-Trigger Pass Cour | nt 0 🗧           |                | 载入 保存          | 手 重设           |               | 确定取          | 消 |

通道设置:选择通道,SVID 触发需二个通道组成一个信号组,可选择是否需要 ALERT。

触发模式:

发条件」,点击「SVID 总线协议触发」,会出现如下图所示。


Start: 只要是有效的 SVID 封包就触发。

Frame Data: 根据设置条件来进行触发。

Parity Error: 当发生 Parity error 就触发。

## Frame Data 条件触发之设置方式

| SVID触发参数设置            |                  |                |                |                |               |              | × |
|-----------------------|------------------|----------------|----------------|----------------|---------------|--------------|---|
| 通道设置 SCLK 0           | SDATA 1          | ALERT 2        |                | 发模式设置 Fram     | e Data        | T            |   |
| Address               | Command          | Master Payload | When Alert     | ACK            | Slave Payload | Trigger      |   |
| P1 XXh Don't care 💌   | = XXh Don't care | • XXh          | X Don't care 💌 | X Don't care 💌 | XXh           | Then Trigger | • |
| P2 XXh Don't care 💌   | = XXh Don't care | , XXh          | X Don't care 💌 | X Don't care 💌 | XXh           | Then Trigger | ~ |
| P3 XXh Don't care 💌   | = XXh Don't care | • XXh          | X Don't care 💌 | X Don't care 💌 | XXh           | Then Trigger | ~ |
| P4 XXh Don't care 💌   | = XXh Don't care | <b>XX</b> h    | X Don't care 💌 | X Don't care 💌 | XXh           | Then Trigger | ~ |
| ✓ Pre-Trigger Pass Co | ount 0×          |                | 载入 保ィ          | 字 重设           |               | 确定取          | 消 |

SVID 封包条件触发,最多可以设置 4 阶封包的条件来进行触发.每一个封包里

面的栏位,都可以设置为 Don't care (xxh)或选择所需的数值,可以设置当 Command 等于设置值时触发或是不等于设置值时触发。其中, Payload 栏位因 为固定都只有 1 byte。因此设置时只要超过 1 byte 的范围.程序会自动滤除多 余的部份。

选择 Alert 通道之后,可以设置当 ALTER 等于 0 或 1 时触发。

设置 Payload 触发条件,输入方式包含字符、十进位码或十六进位码。其中字符 必须用单引号「'」括起来,例如字符'A'。十进位码及十六进位码则是以10进制 及16进制表示,例如字符'A',则设置成 65 及 41h。

Trigger 项目内包含

Then Trigger: 表示符合触发条件成立后,就立即触发。

Then If: 表示符合触发条件成立后,就等待之后的任何一个符合条件的封包。 Next: 表示符合触发条件成立后,就等待下一个紧接出现的封包。

**Pass Count:** SVID Trigger Pass Count 功能有较特殊的条件,以下图为例 P1 & P2 都成立,才算一次。第二、三次的检查时,仍会以 P1 & P2 都成立,才会触发。



| SVID | <b>急</b> 发参数设置     |                  |                |                |                |               |              | × |
|------|--------------------|------------------|----------------|----------------|----------------|---------------|--------------|---|
| 通i   | 道设置 SCLK 0         | SDATA 1          | ALERT 2        |                | 发模式设置 Frame    | e Data        | •            |   |
|      | Address            | Command          | Master Payload | When Alert     | ACK            | Slave Payload | Trigger      |   |
| P1   | XXh Don't care 💌   | = XXh Don't care | ▼ XXh          | X Don't care 💌 | X Don't care 💌 | XXh           | Next         | - |
| P2   | XXh Don't care 💌   | = XXh Don't care | ▼ XXh          | X Don't care 💌 | X Don't care 💌 | XXh           | Then Trigger | • |
| PЗ   | XXh Don't care 💌   | = XXh Don't care | ▼ XXh          | X Don't care 💌 | X Don't care 💌 | XXh           | Then Trigger | ~ |
| P4   | XXh Don't care 💌   | = XXh Don't care | ▼ XXh          | X Don't care 💌 | X Don't care 💌 | XXh           | Then Trigger | ~ |
|      |                    |                  |                |                |                |               |              |   |
| 7    | Pre-Trigger Pass C | count 0 •        |                | 载入 保ィ          | 字 重设           |               | 确定取          | 消 |

以下图为例,P1&P2 都成立后,再间隔几个封包之后 P3 才成立,此时计算触

| SVID触发参数设置             |                  |                |                |                |               |                | × |
|------------------------|------------------|----------------|----------------|----------------|---------------|----------------|---|
| 通道设置 SCLK 0            | SDATA 1          | ALERT 2        |                | 发模式设置 Frame    | e Data        | •              |   |
| Address                | Command          | Master Payload | When Alert     | ACK            | Slave Payload | Trigger        |   |
| P1 XXh Don't care 💌 😑  | XXh Don't care 💌 | XXh            | X Don't care 💌 | X Don't care 💌 | XXh           | Next 💌         |   |
| P2 XXh Don't care 💌 😑  | XXh Don't care 💌 | XXh            | X Don't care 💌 | X Don't care 💌 | XXh           | Then Ifi 🗨     |   |
| P3 XXh Don't care 💌 😑  | XXh Don't care 💌 | XXh            | X Don't care 💌 | X Don't care 💌 | XXh           | Then Trigger 💌 |   |
| P4 XXh Don't care 💌 😑  | XXh Don't care 🔍 | XXh            | X Don't care 💌 | X Don't care 💌 | XXh           | Then Trigger 💌 |   |
| Pre-Trigger Pass Count | 0 *              |                | 载入 保存          | 子 重设           |               | 确定取消           |   |

# 采集波形

按下「开始采集」钮。

发一次。再来只会等待 2 次 P3 成立就会触发.



| Time/Div: 120 ns             |            |                  |                                    |                |                |         |
|------------------------------|------------|------------------|------------------------------------|----------------|----------------|---------|
| Acquired: 08:00:             | 70.2       | 6 us 70.46 us    | 70.66 us 70.86 us 71.06 us         | 71.26 us 71.4  | 16 us 71.66 us |         |
|                              | Idle Start | Addr:0 Cmd:GetRe | g(7) MA.PL:\$R-slow(25) P:0 End Tu | m SL.PL:0      | 2 2:1          | Idle    |
| 0 SClk<br>SVID               |            |                  |                                    |                |                | 340n    |
| 1 SData                      | 40n40n     | 280n 120r        | 80n #0n 80n #0n#0n#0n 80n 170n     | 280n           | 40n40n         |         |
| 2 Alert                      |            |                  |                                    |                |                |         |
|                              |            |                  |                                    |                |                |         |
| Label Channel                |            |                  |                                    |                |                |         |
| (CH-00) CH-00<br>CH-01 CH-00 |            | SVID(SVID)       | •                                  |                |                |         |
| Timestamp                    | Addr(h)    | Command(h)       | MA. Payload(h)                     | SL. Payload(h) | Ack            | Error 🔺 |
| 0.06069 ms                   | 0          | SetRegDAT(6)     | 1.250V (C9)                        |                | ACK(2)         |         |
| 0.06305 ms                   | 1          | SetRegADR(5)     | Vout max(30)                       |                | NAK(1)         |         |
| 0.06538 ms                   | 1          | SetRegDAT(6)     | 1.250∀ (C9)                        |                | ACK(2)         |         |
| 0.06775 ms                   | 0          | GetReg(7)        | SR-fast(24)                        | OA             | ACK(2)         |         |
| 0.07016 ms                   | 0          | GetReg(7)        | SR-slow(25)                        | 02             | ACK(2)         |         |
| 0.07253 ms                   | 0          | GetReg(7)        | DC_LL(23)                          |                | Rejet(3)       |         |
| 0.07863 ms                   | 0          | GetReg(7)        | DC_LL(23)                          |                | Rejet(3)       |         |
| 0.08472 ms                   | 0          | GetReg(7)        | DC_LL(23)                          |                | Rejet(3)       |         |
| 0.0908 ms                    | 1          | GetReg(7)        | DC_LL(23)                          |                | Rejet(3)       |         |
| 0.09689 ms                   | 1          | GetReg(7)        | DC_LL(23)                          |                | Rejet(3)       |         |
| 0.103 ms                     | 1          | GetReg(7)        | DC_LL(23)                          |                | Rejet(3)       |         |
| 0.16566 ms                   | 1          | SetVID-Decay(3)  | 0.000V (00)                        |                | Rejet(3)       |         |
| •                            |            |                  |                                    |                |                |         |
|                              |            |                  |                                    |                |                |         |



# UART 触发

## 启用 UART 触发

到「硬件参数设置」选择「UART Trigger」,如下图所示。

| Mode                                 | Min. S/R | Max. S/R | Available ch. | Min. Mem. | Max 🔺  |
|--------------------------------------|----------|----------|---------------|-----------|--------|
| 800M                                 | 800MHz   | 800MHz   | 9             | 256       | 8M     |
|                                      | 400MHz   | 400MHz   | 18            | 256       | 4M     |
| 🛨 🧰 200M                             | 1Hz      | 200MHz   | Adjustable    | 256       | Adju   |
| 🖃 🔄 UART Trigger                     | 1Hz      | 200MHz   | Adjustable    | 256       | Adju   |
| ──────────────────────────────────── | 200MHz   | 200MHz   | Fixed         | Auto      | Auto   |
| - 🗐 Transitional Storage-8           | 200MHz   | 200MHz   | Fixed         | Auto      | Auti   |
| - UART Trigger-36                    | 1Hz      | 200MHz   | Adjustable    | 256       | 2M     |
| - 🗒 UART Trigger-18                  | 1Hz      | 200MHz   | Adjustable    | 256       | 4M     |
| ──────────────────────────────────── | 1Hz      | 200MHz   | Adjustable    | 256       | 6M     |
| ──────────────────────────────────── | 1Hz      | 200MHz   | Adjustable    | 256       | 8M     |
| ────── UART Trigger-6                | 1Hz      | 200MHz   | Adjustable    | 256       | 12M    |
| ──────────────────────────────────── | 1Hz      | 200MHz   | Adjustable    | 256       | 18M    |
| ──────────────────────────────────── | 1Hz      | 200MHz   | Adjustable    | 256       | 36M    |
| UART Trigger-1                       | 1Hz      | 200MHz   | Adjustable    | 256       | 72M    |
| 🛨 📜 CAN Trigger                      | 1Hz      | 200MHz   | Adjustable    | 256       | Adjı 💌 |
| <ul> <li>▲</li> </ul>                |          |          |               |           | •      |

## 触发参数设置

按下「确定」后,点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触 发条件」,点击「UART 总线协议触发」,会出现如下图所示。

| UART触发参数设置                                                  |                                                                                                                                                            |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 触发通道:<br>波特率: 9600 ▼<br>数据位: 8 ▼<br>校验位: NONE ▼<br>停止位: 1 ▼ | 极性<br>Idle High<br>・<br>Start D0・・・・・D7 Parity Stop<br>Bit D0・・・・・D7 Parity Stop<br>Idle Low<br>C Start D0・・・・・D7 Parity Stop<br>Bit D0・・・・・D7 Parity Stop |
| IF I                                                        | Then                                                                                                                                                       |
| OR IF                                                       | Then                                                                                                                                                       |
| OR IF                                                       | Then                                                                                                                                                       |
| OR IF                                                       | Then                                                                                                                                                       |
| Pre-Trigger                                                 | Pass Count 0                                                                                                                                               |
| 触发参数检查 载入                                                   | 保存 确定 取消                                                                                                                                                   |



触发通道:选择要触发的通道,只允许设置一个通道。

波特率:每秒传输的位数,范围是 110-2M(bps),您可选用内建波特率或自行输入。

**数据位:**5、6、7、8(bits)。

校验位:偶同位、奇同位、无。

停止位:1、2(bits)。

**触发方式:**即为UART极性,可分为自动侦测 Idle High 下降沿触发(开始位为 0)、 Idle Low 上升沿触发(开始位为 1)。

IF-Then 触发条件式:设置触发的条件,输入方式包含字、字符串、十进位码或 十六进位码。其中字及字符串必须用单引号「'」及双引号「"」括起来,例如字 'A'或是字符串"Acute"。10 进位码及 16 进位码则是以 10 进制及 16 进制表示,例 如字'A',则设置成 65 及 41h。字符串可以累加,如字符串"Acute"可以设置成 'A'\_"cute"或是'A'\_63h\_'u'\_'t'\_65h,每个字与字间要加一个空白。

注意:每个字符串长度最大到 16 个字。

IF-Then 是触发的条件式,如 IF a Then b 则表示 a 成立后,b 也要成立,满足条件式即触发成功。本功能提供四个 IF-Then 给使用者使用,四个 IF 任一成立即可触发。

**Pass Count:** UART Trigger Pass Count 功能有较特殊的条件,以下图为例,IF 条件任一成立就算一次,达到五次之后,下一次不管是"Acute"或是"Inc"出现,哪个先出现就先触发。

另外一种例子如下图,第一个 IF 条件式中,字符串"Acute"及字符串

"Technology"之间是非连续的,所以当"Acute"找到之后,后面有出现"Technology",则触发条件成立。

或是第二个 IF 条件成立,则触发条件成立。触发条件成立达五次,下一次触发条件成立即触发。



| UART触发参数设置                                                      |                                                                                                                                                               |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 触发通道: 0 ▼<br>波特率: 9600 ▼<br>数据位: 8 ▼<br>校验位: NONE ▼<br>停止位: 1 ▼ | 极性<br>Idle High<br>・<br>Start D0・・・・・D7 Parity Stop<br>Bit D0・・・・・D7 Parity Stop<br>Idle Low<br>・<br>Start D0・・・・・D7 Parity Stop<br>Bit D0・・・・・D7 Parity Stop |
| IF OR IF OR IF OR IF OR IF                                      | Then Then Then Then Then Then Then Then                                                                                                                       |
| Pre-Trigger                                                     | Pass Count 0                                                                                                                                                  |
| 触发参数检查 载入                                                       | 保存 确定 取消                                                                                                                                                      |

**触发参数检查:**帮助检查输入的字符串是否合乎规定,例如字符串超过 16 个字, 将超过的部份截断。

### 采集波形

| ime/Div: 1.024 | m 📮        |      |         |        |          |        |          |    |         |    |          |     |          |     |          |       |          |
|----------------|------------|------|---------|--------|----------|--------|----------|----|---------|----|----------|-----|----------|-----|----------|-------|----------|
| quired: 15:07: | 5          | 30   | 0.773 S | 3      | 00.774 S | 3      | 00.776 S | 30 | 0.778 S | 30 | 00.779 S | 30  | 0.781 \$ | 30  | 0.783 \$ | 3     | 00.784 S |
|                |            | Idle | 55      |        | 33       | 01     | 00       | 02 |         | 17 | 01       | 02  | LC       |     |          | Break |          |
|                |            |      |         |        |          |        |          |    |         |    |          |     |          |     |          |       |          |
| Label Chan     | nel 🔳      |      |         |        |          |        |          |    |         |    |          |     |          |     |          |       | •        |
| CH-00 CH-0     | <b>.</b> . | Bus  | 🕻 [сн-  | 00(UAF | RT (RS23 | 32)) 🗖 | -        |    |         |    |          |     |          |     |          |       |          |
| Time State     | DO         | Dl   | D2      | D3     | D4       | D5     | D6       | D7 | D8      | D9 | D10      | D11 | D12      | D13 | D14      | D15   | ASCII    |
| 300.7          | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 300.7          | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 00.7           | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 00.8           | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 00.8           | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 300.8          | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 300.8          | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 300.8          | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 300.8          | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 00.8           | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 300.8          | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 300.9          | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 00.9           | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 300.9          | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 300.9          | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 300.9          | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
| 00.9           | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    | _        |     |          |     |          |       | U3       |
| 300.9          | 55         | 33   | 01      | 00     | 02       | 17     | 01       | 02 | 10      |    |          |     |          |     |          |       | U3       |
|                |            |      |         |        |          |        |          |    |         |    |          |     |          |     |          |       |          |
|                |            |      |         |        |          |        |          |    |         |    |          |     |          |     |          |       | <u> </u> |
|                |            |      |         |        |          |        |          |    |         |    |          |     |          |     |          |       |          |

按下「开始采集」钮



# 总线协议语句式触发

## 触发参数设定

进入触发画面后会看到如下图的设定画面。

| LPC Trigger 🚺 ng                         | 2                                                                                                                                  | 3 4 💌                                                                                                                  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Channel<br>LFRAME# CH 0 •<br>LCLK CH 1 • | $ \begin{array}{c} \text{Run} \\ \downarrow \\ \text{State 1} \\ \downarrow \\ \text{T1 T2} \end{array} \rightarrow \text{False} $ | State 1       Logic Condition © OR © AND         Event 1 × Event 2 ×   + OR           Cycle Type       Memory Read     |
| LAD[0] CH 2 +                            | $\xrightarrow{\text{State 2}} \xrightarrow{\text{Trigge}}$                                                                         | r Clk # If the condition is true, then START 1 0000b Reset Counter 1                                                   |
| LAD[2] CH 4                              | State 3                                                                                                                            | CT/DIR 1 010%b Reset Counter 2                                                                                         |
|                                          |                                                                                                                                    | ADDR         =         8         7654XXXXh           TAR         2         XXh         Image: Start Timer 2 from reset |
| Rising Edge                              | Trigger                                                                                                                            | SYNC 1 Xh                                                                                                              |
| Start Error                              |                                                                                                                                    |                                                                                                                        |
| Address Error<br>(Bus Master)            | + State x 4<br>+ Counter x 2                                                                                                       | Data Offset                                                                                                            |
| Channel Error<br>(DMA)                   |                                                                                                                                    |                                                                                                                        |
| Size Error                               | Timer 1                                                                                                                            | << Advanced Setting                                                                                                    |
| Sync Error                               |                                                                                                                                    |                                                                                                                        |
| Undo Redo                                | Pre-Trigger     Pass Count     0                                                                                                   |                                                                                                                        |

1. 通道及总线触发参数设定:内容根据选择不同的触发种类有所不同,请参考

各总线触发说明。

2. 语句式触发流程图:





| $ \begin{array}{c} \text{Run} & \longrightarrow & \text{True} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$ | $ \begin{array}{c} \text{Run} & \longrightarrow & \text{True} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| State 1 (Active T1) next State 2 (Time >=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | State 1 (Active T1) next State 2 (Time <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| T1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

每个按钮即代表一个触发阶层(State),各个阶层的True 流向固定指向下一层,

False 流向则可由使用者调整。可提供的操作如下:

依序点选两个阶层,将第一个阶层的 False 流向连接到第二个阶层。

点选同一个阶层两次,将此阶层的 False 流向连结回自己。

依序点选阶层按钮及**▼**Trigger 》,使该阶层内的条件成立后送出触发讯号。

点选阶层按钮右上方的删除钮, 删除该阶层及内包含的所有条件。

点选 **Trigger** 右上方的删除钮, 清除所有触发讯号发出链接。

点选 + State x 4 / + Counter x 2 增加新的阶层。

鼠标移到 Timer 1 按钮以调整 Timer 的频率周期。Timer 的最小刻度为 5ns, 最大值为 8 天。

3. 触发阶层内部参数设定



|        | Clk # |                 |
|--------|-------|-----------------|
| START  | 1     | 0000b           |
| CT/DIR | 1     | 010Xb           |
| ADDR = | 8     | 7654XXXXh       |
| TAR    | 2     | XXh             |
| SYNC   | 1     | Xh              |
| DATA   | 2     | ABh XXh XXh XXh |
|        |       |                 |

此区会显示左方触发流程中各个阶层内所包含的详细触发条件:

左上方 State 1 文字表示目前显示的阶层编号

Logic Condition @ OR @ AND 可以设定此阶层中各个事件(Event)之间的逻辑运算规则。

分页标签 Event 1 × Event 2 × | + OR | 可以切换/检视目前此阶层内 OR/AND 条件的组

合数量。点选 + OR / / + AND 标签可以增加最多至8组 OR/AND 触发条件。

中央参数设定区域会根据选择触发种类而有所不同

|         | AND 条件                                         | OR 条件                                                    |  |  |
|---------|------------------------------------------------|----------------------------------------------------------|--|--|
| 设定内容    | State 1<br>X5h<br>AND<br>1Xh<br>State 2<br>20h | State 1<br>OSh<br>OR<br>10h<br>State 2<br>20h            |  |  |
| 对应之触发条件 | 15h 20h                                        | $05h \longrightarrow 20h$ $OR$ $10h \longrightarrow 20h$ |  |  |

各阶层内事件与触发讯号的关系可参考以下表格:



4. 时间(Timer)与计数器(Counter)设定

| -Timor Condition-                     |                          |          |  |  |  |  |
|---------------------------------------|--------------------------|----------|--|--|--|--|
|                                       |                          |          |  |  |  |  |
| AND Timer 1                           | < ▼                      | 5.000 ns |  |  |  |  |
|                                       |                          |          |  |  |  |  |
| AND Timer 2                           | >= 🔻                     | 5.000 ns |  |  |  |  |
|                                       |                          |          |  |  |  |  |
| If the condition is to                | rue, then                |          |  |  |  |  |
| Reset Counter 1                       |                          |          |  |  |  |  |
| · · · · · · · · · · · · · · · · · · · |                          |          |  |  |  |  |
| Reset Counter 2                       |                          |          |  |  |  |  |
| Generation Start Timor 1 fr           | m rocot                  |          |  |  |  |  |
|                                       | Start Timer 1 from reset |          |  |  |  |  |
| Start Timer 2 fro                     | om reset                 |          |  |  |  |  |
|                                       |                          |          |  |  |  |  |

按下 Advanced Setting >> 按钮后即可开启进阶设定窗口,设定 Timer 及 Counter 参考 及重置设定。

于设定窗口调整 Timer 的参考形式及条件达成后,重置设定即可于流程控制区看 到设定的示意图。

| State 1       | State 1              | State 1<br>C2 T2                                                                         | State 1<br>T1 T2<br>C1 C2 T1 T2                                                                              |
|---------------|----------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|               |                      |                                                                                          | State 1                                                                                                      |
|               | State 1              | State 1                                                                                  | 且时间小于                                                                                                        |
| State 1       | 且时间大于                | 且时间小于                                                                                    | T1                                                                                                           |
|               | T1                   | T1                                                                                       | 且时间大于                                                                                                        |
|               |                      |                                                                                          | T2                                                                                                           |
| 白 <b>み</b> T1 | V                    | 启动 T2                                                                                    | 启动 T1 及 T2                                                                                                   |
|               |                      | 重置 C2                                                                                    | 重置 C1 及 C2                                                                                                   |
|               | Run<br>State 1<br>T1 | Run       State 1         State 1       State 1         L       日时间大于         T1       X | Run<br>State 1<br>T1Run<br>State 1<br>日<br>日<br>日<br>T1Run<br>State 1<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br> |



# eSPI 触发

支援机种:

#### 启动eSPI触发

到「硬件参数设置」选择「eSPI Trigger」,如下图所示。实际使用的记忆深度 根据您的需求调整。

| Mode                          | Min. S/R | Max. S/R | Available ch. | Min. Mem. | Max. Mem.  | ^ |
|-------------------------------|----------|----------|---------------|-----------|------------|---|
| + 🧰 200M                      | 1Hz      | 200MHz   | Adjustable    | 256       | Adjustable |   |
| + 🧰 CAN Trigger               | 1Hz      | 200MHz   | Adjustable    | 256       | Adjustable |   |
| 🖃 🔄 eSPI Trigger              | 1Hz      | 200MHz   | Adjustable    | 256       | Adjustable |   |
| Transitional Storage(400M)-16 | 400MHz   | 400MHz   | Fixed         | Auto      | Auto       |   |
| - eSPI Trigger (400M)-18      | 400MHz   | 400MHz   | 18            | 256       | 4M         |   |
| -                             | 200MHz   | 200MHz   | Fixed         | Auto      | Auto       |   |
| -                             | 200MHz   | 200MHz   | Fixed         | Auto      | Auto       |   |
| -≡ eSPI Trigger-36            | 1Hz      | 200MHz   | Adjustable    | 256       | 2M         |   |
| –≝ eSPI Trigger-18            | 1Hz      | 200MHz   | Adjustable    | 256       | 4M         |   |
| –≝ eSPI Trigger-12            | 1Hz      | 200MHz   | Adjustable    | 256       | 6M         |   |
| - 🕮 eSPI Trigger-9            | 1Hz      | 200MHz   | Adjustable    | 256       | 8M         |   |
| eSPI Trigger-6                | 1Hz      | 200MHz   | Adjustable    | 256       | 12M        |   |
| + 🧰 I2C Trigger               | 1Hz      | 200MHz   | Adjustable    | 256       | Adjustable |   |
| + 🚞 I2S Trigger               | 1Hz      | 200MHz   | Adjustable    | 256       | Adjustable |   |
| 🛨 🧰 LIN Trigger               | 1Hz      | 200MHz   | Adjustable    | 256       | Adjustable |   |
| 🛨 🧰 LPC Trigger               | 1Hz      | 200MHz   | Adjustable    | 256       | Adjustable | 4 |

# 触发参数设置

按下「确定」后,点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触发条件」,点击「eSPI通讯协议触发」,会出现如下图所示。



| Enhanced SPI (eSPI) 触发 | <b>参</b> 致设置                             | ?          | ×  |
|------------------------|------------------------------------------|------------|----|
| Channel                | State                                    |            |    |
| CS# CH 0 ÷             | Run V True                               |            |    |
| SCLK CH 1 ÷            | State 1 False                            |            |    |
| I/O 0 CH 2 ÷           | Tricore                                  |            |    |
| I/O 1 CH 3 ÷           |                                          |            |    |
| I/O 2 CH 4 ÷           |                                          |            |    |
| I/O 3 CH 5 ÷           |                                          |            |    |
| Alert CH 6 🕂           |                                          |            |    |
| Start Up Settings      |                                          |            |    |
| Single Mode 🔹          |                                          |            |    |
| Alert From I/O[1]      |                                          |            |    |
| CRC Check Enable 💌     |                                          |            |    |
| Trigger On             | + State v 7                              |            |    |
| Format Error           |                                          |            |    |
| OPCode Error           | +Counter x 2                             |            |    |
| Response Error         |                                          |            |    |
| Status Error           |                                          |            |    |
| CRC Error              | Timer 1                                  |            |    |
| tCLQV 15ns             | Timer 2                                  |            |    |
| -)                     | Advance                                  | ed Setting | >> |
| Undo Redo              | ▼ Pre-Trigger Pass Count 0 式 載入 存档 重设 确定 | Ę          | 则消 |

Channel: 通道设定请参考总线分析的 eSPI 说明。

Start Up Settings: 初始状态有三个设置。第一个必须指定当前的工作模式为 Single / Dual / Quad IO Mode,之后进入采集模式后硬件会监控总线上的设置 而切换;第二个选择 Alert 信号来自 I/O 1 或 Alert;第三个则是选择是否启动 CRC Check。

Trigger on:选择错误触发。

tCLQV: Response 中 I/O 与 Clock 的相位延迟设置,若设置不正确有可能导致 Response 项目无法被触发。

语句式条件触发设定:请参考总线协议语句式触发说明。



## 触发条件设定区:

| State 1     | Le            | ogic Condition • OR C AND |
|-------------|---------------|---------------------------|
| Event 1 +   | OR            |                           |
| Command     | GET_CONFIGU   | RATION (21h)              |
| Response    | ACCEPT (x4 Da | ata) (08h) 🔻              |
| Data Dir    | C Command     | Response                  |
| Data Offset | AnyOfs        | 0+                        |
| Com         | mand .        | Response                  |
| Add         | dress         | Data (D0+)                |
| ×           | (Xh           | 13h                       |
| Address     |               | Data (D1+)                |
| X           | 0Xh           | 11h                       |
| C           | RC            | Data (D2+)                |
| Х           | Xh            | XXh                       |
|             |               | Status (D4+)              |
|             |               | XXh                       |
|             |               | Status                    |
|             |               | XXh                       |
|             |               | Status                    |
|             |               | XXh 👤                     |
|             |               | Advanced Setting >>       |

eSPI 总线触发提供各种 Command, Response 参数格式,如果无法确定待测信号 内容,可先选择 Any Command 采集信号,利用 LA Viewer 的 eSPI 译码功能分析 后再根据内容选择。

| Timestamp     | OpCode/Response        | СусТуре | Tag | LEN | Address | DO | D1 | D2 | D3 | D4 | D5 | D6 | D7 | ASCII | Status | CRC | Memo |
|---------------|------------------------|---------|-----|-----|---------|----|----|----|----|----|----|----|----|-------|--------|-----|------|
| -0.00000245 S | GET CONFIGURATION (21) |         |     |     | 0010    |    |    |    |    |    |    |    |    |       |        | 58  |      |
| 0.0000086 S   | ACCEPT (08)            |         |     |     |         | 13 | 11 | 00 | 00 |    |    |    |    |       | 030F   | 95  |      |
| 0.000003 5    | SET_CONFIGURATION(22)  |         |     |     | 0010    | 01 | 11 | 00 | 00 |    |    |    |    |       |        | F5  |      |
| 0.000005935 S | ACCEPT (08)            |         |     |     |         |    |    |    |    |    |    |    |    |       | 030F   | 9B  |      |
| 0.000008455 S | GET_STATUS (25)        |         |     |     |         |    |    |    |    |    |    |    |    |       |        | FB  |      |
| 0.000009365 S | ACCEPT (08)            |         |     |     |         |    |    |    |    |    |    |    |    |       | 030F   | 9B  |      |
| 0.001601195 S | GET_CONFIGURATION(21)  |         |     |     | 0010    |    |    |    |    |    |    |    |    |       |        | 58  |      |
| 0.001602795 S | ACCEPT (08)            |         |     |     |         | 13 | 11 | 00 | 00 |    |    |    |    |       | 030F   | 95  |      |
| 0.001606635 S | SET_CONFIGURATION(22)  |         |     |     | 0010    | 01 | 11 | 00 | 00 |    |    |    |    |       |        | F5  |      |
| 0.001609575 S | ACCEPT (08)            |         |     |     |         |    |    |    |    |    |    |    |    |       | 030F   | 9B  |      |

eSPI 译码画面

Data Offset: 没有勾选 any offset 时,就会 frame 开始处依顺序找寻设置的值,比如传送 0x13 0x11 0x00 0x00,当下方设置 D0 13h 就是在 frame 开头第一个 Byte 去比对 13h 做触发。当选择 any offset 的情况时,则是依照下方 Byte 的顺序去找 寻特定值,而不会从 frame 的开始处寻找。传送 0x13 0x11 0x00 0x00,下方设置 D0 XXh, D1 11h,就会以两个 Byte 为单位去寻找第二个 byte 是 0x11 的时候触发。



# LIN 触发

#### 启动LIN触发

到「硬件参数设定」选择「LIN Trigger」,如下图所示。实际使用的记忆深度根

据您的需求调整。

| Mode                       | Min. S/R | Max, S/R | Available ch. | Min. Mem. | Max   |
|----------------------------|----------|----------|---------------|-----------|-------|
| + 🧰 LPC Trigger            | 1Hz      | 200MHz   | Adjustable    | 256       | Adji  |
| + 🧰 NAND Flash Trigger     | 1Hz      | 200MHz   | Adjustable    | 256       | Adju  |
| + 🧰 SVI2 Trigger           | 1Hz      | 200MHz   | Adjustable    | 256       | Adju  |
| + 🧰 SMBus/PMBus Trigger    | 1Hz      | 200MHz   | Adjustable    | 256       | Adju  |
| + 🧰 USB 1.1 Trigger        | 1Hz      | 200MHz   | Adjustable    | 256       | Adju  |
| – 🔄 LIN Trigger            | 1Hz      | 200MHz   | Adjustable    | 256       | Adju  |
| -🔲 Transitional Storage-32 | 200MHz   | 200MHz   | Fixed         | Auto      | Aut   |
| ─                          | 200MHz   | 200MHz   | Fixed         | Auto      | Aut   |
| ───── LIN Trigger-36       | 1Hz      | 200MHz   | Adjustable    | 256       | 2M    |
| ───── LIN Trigger-18       | 1Hz      | 200MHz   | Adjustable    | 256       | 4M    |
| —🗒 LIN Trigger-12          | 1Hz      | 200MHz   | Adjustable    | 256       | 6M    |
| ───── LIN Trigger-9        | 1Hz      | 200MHz   | Adjustable    | 256       | 8M    |
| –≝ LIN Trigger-6           | 1Hz      | 200MHz   | Adjustable    | 256       | 12M   |
| 🖃 LIN Trigger-4            | 1Hz      | 200MHz   | Adjustable    | 256       | 18M   |
| + 🧰 External Clock         | 1 🖬 🤉    | 200MH-2  | 0 diustable   | 256       | 0 dia |

#### 触发参数设定

按下「确定」后,点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触发条件」,点击「LIN 通讯协议触发」,会出现如下图所示。

| LIN 触发参数设置     |                                                              | ? <mark>×</mark>                   |
|----------------|--------------------------------------------------------------|------------------------------------|
| Channel        | Run 🔶 🔶 True                                                 | State 1 Logic Condition C OR C AND |
| Baud rate      | State 1 False                                                | Event 1 +OR                        |
| 9600 -         | Trigger                                                      |                                    |
| Trigger frame  |                                                              | ID XXh Parity Xh                   |
| 🗖 Break        |                                                              | D0 XXh D4 XXh                      |
| Sync           | N =                                                          | D1 XXh D5 XXh                      |
| End            |                                                              | D2 XXh D6 XXh                      |
| 🕅 Wake up      |                                                              | D3 XXh D7 XXh                      |
| Error Detect   | + State x 7                                                  |                                    |
| Sync Error     | +Counter x 2                                                 |                                    |
| Parity Error   |                                                              |                                    |
| Stop Error     | Timer 1                                                      |                                    |
| Checksum Error | Timer 2                                                      |                                    |
| Classic mode 💌 |                                                              | Advanced Setting >>                |
| Undo Redo      | ✓         Pre-Trigger         Pass Count         0         . | 载入 存档 缺省 确定 取消                     |



Channel: 选择通道。

Baud rate: 选择需要的 Baud rate。

Trigger frame: 提供 Break / Sync / Data / End / Wake up 触发。

Error Detect: 当 Sync / Parity / Stop / Checksum 发生错误时触发 'Checksum 可选

择 Classic 或 Enhanced mode。

**Redo / Undo:** Redo / Undo 功能可以在用户输入后记录目前的输入信息,提供用 户回复上一步 / 重作下一步的功能。

触发条件设定区

| ID | XXh | Parity | Xh  |
|----|-----|--------|-----|
| DO | XXh | D4     | XXh |
| D1 | XXh | D5     | XXh |
| D2 | XXh | D6     | XXh |
| D3 | XXh | D7     | XXh |
|    |     |        |     |

可触发 ID / Parity / Data。



# LPC 触发

## 启动 LPC 触发

到「硬件参数设定」选择「LPC Trigger」,如下图所示。

| Mode                         | Min. S/R | Max. S/R | Available  | Min. M | Max. Mem.  |   |
|------------------------------|----------|----------|------------|--------|------------|---|
| SPI Trigger(800M)-9          | 800MHz   | 800MHz   | 9          | 256    | 8M         |   |
| + 🧰 SPI Trigger              | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| + 🧰 SVID Trigger             | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| Serial Flash Trigger(800M)-9 | 800MHz   | 800MHz   | 9          | 256    | 8M         |   |
| + 🧰 SD/eMMC Trigger          | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| – 🔄 LPC Trigger              | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| Transitional Storage-32      | 200MHz   | 200MHz   | Fixed      | Auto   | Auto       |   |
| - 🗐 Transitional Storage-8   | 200MHz   | 200MHz   | Fixed      | Auto   | Auto       |   |
| EPC Trigger-36               | 1Hz      | 200MHz   | Adjustable | 256    | 2M         |   |
| EPC Trigger-18               | 1Hz      | 200MHz   | Adjustable | 256    | 4M         |   |
| EPC Trigger-12               | 1Hz      | 200MHz   | Adjustable | 256    | 6M         |   |
| EPC Trigger-9                | 1Hz      | 200MHz   | Adjustable | 256    | 8M         | Ξ |
| EPC Trigger-6                | 1Hz      | 200MHz   | Adjustable | 256    | 12M        |   |
| + 🧰 NAND Flash Trigger       | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| + 🧰 SVI2 Trigger             | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| + 🛄 USB 1.1 Trigger          | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| + 📄 External Clock           | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
|                              |          |          |            |        |            |   |

## 触发参数设置

按下「确定」后,点击工具列上的「触发条件」或是从菜单的「硬件」点击「触发条件」,点击「LPC 通讯协议触发」,会出现如下图所示。

| LPC Trigger Setting                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c c} Channel \bullet & \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                     | State 1         Image: Condition Image: Condita Condita Condition Image: Condita Condition Image: Condition Im |
| $ \begin{array}{c c} LAD[0] \hline CH 2 & & \\ \hline & & \\ LAD[1] \hline CH 3 & & \\ \hline & & \\ \hline \end{array} \end{array}  \begin{array}{c} State 2 \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}  \end{array}  Trigge$ | Clk #         If the condition is true, then           START         1         0000b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                   | CT/DIR     1     010Xb       ADDR     =     8     7654XXXXh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                   | TAR 2 XXh<br>SYNC 1 Xh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Error Detect                                                                                                                                                                                                                                                      | DATA 2 ABh XXh XXh XXh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CT/DIR Error + State x 4<br>Address Error<br>(Bus Master)                                                                                                                                                                                                         | Data Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Channel Error<br>(DMA)                                                                                                                                                                                                                                            | Fix Offset 1+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Size Error         Timer 1           MSize Error         Timer 2                                                                                                                                                                                                  | << Advanced Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Undo Bredo Pre-Trigger Pass Count 0-                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Channel:选择通道,LPC 触发包含 LClock 及 LFrame 在内总共使用六个通道。

| Clock Edge |  |
|------------|--|
|            |  |

Rising Edge 提供选择在 Clock Rising 或是 Falling Edge 读取数据的功能。

- 2. 语句式条件触发设置:请参考总线协议语句式触发说明
- 3. 触发条件设置区:

| Cycle Type  | /0 R  | ead 💌           | [          |                                                                                                                  |   |
|-------------|-------|-----------------|------------|------------------------------------------------------------------------------------------------------------------|---|
| (           | Clk # | ŧ               |            |                                                                                                                  |   |
| START       | 1     | 0000b           | Cycle Type | I/O Read                                                                                                         | - |
| CT/DIR      | 1     | 000Xb           |            | Start of Frame                                                                                                   |   |
| ADDR =      | 4     | ,<br>0068h      |            | I/O Read<br>I/O Write                                                                                            |   |
| TAR         | 2     | XXh             |            | Memory Read<br>Memory Write                                                                                      |   |
| SYNC        | 1     | Xh              |            | DMA Read<br>DMA Write                                                                                            |   |
| DATA        | 2     | 00h XXh XXh XXh |            | Firmware Memory Read<br>Firmware Memory Write                                                                    |   |
|             |       |                 |            | Bus Master 0 - I/O Read<br>Bus Master 0 - I/O Write<br>Bus Master 0 - Memory Read<br>Bus Master 0 - Memory Write |   |
| Data Offset |       |                 | 1          | Bus Master 1 - I/O Read                                                                                          |   |
| Fix Offset  |       | 1+              |            | Bus Master 1 - I/O Write<br>Bus Master 1 - Memory Read<br>Bus Master 1 - Memory Write                            |   |

LPC 总线触发提供各种 Cycle Type 对应各种参数格式,如果无法确定待测讯号是 何种类型,可先选择 Start of Frame 撷取讯号,利用 LA Viewer 的 LPC 译码功能 分析后再根据内容选择。

| Sample  | Field         | #Clocks | LAD  | Comment                               |
|---------|---------------|---------|------|---------------------------------------|
| 7002909 | START         | 1       | 0    | Heed for Memory or I/O or DMA cycles  |
| 7002917 | CYCLETYPE+DIR | 1       | 0    | I/O Read                              |
| 7002925 | ADDR          | 4       | 0068 |                                       |
| 7002959 | TAR           | 2       | FF   |                                       |
| 7002975 | SYNC          | 1       | 6    | Long Wait                             |
| 7002984 | SYNC          | 1       | 6    | Long Wait                             |
| 7002992 | SYNC          | 1       | 6    | Long Wait                             |
| 7003000 | SYNC          | 1       | 0    | Ready                                 |
| 7003009 | DATA          | 2       | 00   |                                       |
| 7003025 | TAR           | 2       | FF   |                                       |
| 7082283 | START         | 1       | 0    | Used for Memory or I/O or DMA cycles. |
| 7082291 | CYCLETYPE+DIR | 1       | 0    | I/O Read                              |
| 7082299 | ADDR          | 4       | 0064 |                                       |

LPC 解碼画面

其它参数设定说明如下:

按下设定区的 = 按钮可以将触发切换为 = / ≠ / > / ≤ 等不同的条件。



设定字段可填入所需触发的参数,亦可填入X代表任意值。

| Data Offset  |    |   |   |   |   |   |   |   |   |   |
|--------------|----|---|---|---|---|---|---|---|---|---|
|              | Ξ. | ' | ' | ' | ' | ' | ' | ' | ' | 1 |
| I ►IX Offset | Ļ  |   |   |   |   |   |   |   | _ | 1 |

设定方块可以选择是否指定特定 Data 封包位

置触发。

- 4. 时间(Timer)与计数器(Counter)设定: 请参考总线协议语句式触发说明
- 5. LPC 协议错误侦测功能:此功能会针对 Intel<sup>®</sup> Low Pin Count Interface Specification 文件中明确定义的保留及错误值作触发。
- Redo/Undo 功能钮:可以在使用者输入后记录目前的输入信息,提供使用者 回复上一步/重作下一步的功能



# MIPI SPMI 触发

## 启动 MIPI SPMI 触发

到「硬件参数设置」选择「MIPI SPMI Trigger」,如下图所示。实际使用的记忆 深度根据您的需求调整。

| Mode                                 | Min. S/R | Max. S/R | Available ch. | Min. Mem. | Max.       |
|--------------------------------------|----------|----------|---------------|-----------|------------|
| 🛨 🧰 LIN Trigger                      | 1Hz      | 200MHz   | Adjustable    | 256       | Adju       |
| + 🧰 LPC Trigger                      | 1Hz      | 200MHz   | Adjustable    | 256       | Adju       |
| 🖃 🔄 MIPI SPMI Trigger                | 1Hz      | 200MHz   | Adjustable    | 256       | Adju       |
| ─                                    | 200MHz   | 200MHz   | Fixed         | Auto      | Auto       |
| ─                                    | 200MHz   | 200MHz   | Fixed         | Auto      | Auto       |
| — 📕 MIPI SPMI Trigger-36             | 1Hz      | 200MHz   | Adjustable    | 256       | 2M         |
| ─                                    | 1Hz      | 200MHz   | Adjustable    | 256       | <b>4</b> M |
| ─                                    | 1Hz      | 200MHz   | Adjustable    | 256       | 6M         |
| ──────────────────────────────────── | 1Hz      | 200MHz   | Adjustable    | 256       | 8M         |
| ─Ⅲ MIPI SPMI Trigger-6               | 1Hz      | 200MHz   | Adjustable    | 256       | 12M        |
| MIPI SPMI Trigger-4                  | 1Hz      | 200MHz   | Adjustable    | 256       | 18M        |
| 🕂 🧰 NAND Flash Trigger               | 1Hz      | 200MHz   | Adjustable    | 256       | Adju       |
| + 🧰 SD/eMMC Trigger                  | 1Hz      | 200MHz   | Adjustable    | 256       | Adju       |
| Serial Flash Trigger (800M)-9        | 800MHz   | 800MHz   | 9             | 256       | 8M         |
| + 🧰 SMBus/PMBus Trigger              | 1Hz      | 200MHz   | Adjustable    | 256       | Adju '     |
| <                                    |          |          |               |           | >          |

## 触发参数设置

按下「确定」后,点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触 发条件」,点击「MIPI SPMI 通讯协议触发」,会出现如下图所示。



| MIPI SPMI 触发参数设置                                                                                                     |                             |                                       | ×                             |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------|-------------------------------|
| Channel<br>SPMI CLK CH 0 · ·<br>SPMI DAT CH 1 · ·                                                                    | Run<br>State 1 False        | State 1 Logic Con                     | dition • OR C AND             |
| Trigger On                                                                                                           |                             | Device Address                        | Xh                            |
| SSC                                                                                                                  |                             | Command                               | XXh                           |
| No Response Frame                                                                                                    |                             | Data Address                          | XXXXh                         |
| Error Check<br>CMD Frame Format<br>CMD Parity<br>Data Address Parity<br>Data Frame Parity<br>Bus Park / Bus Handover | + State x 7<br>+Counter x 2 | Data<br>XXh XXh<br>XXh XXh<br>XXh XXh | XXh XXh<br>XXh XXh<br>XXh XXh |
| -Bus Timeout                                                                                                         | Timer 1<br>Timer 2          | AUX                                   | Advanced Setting >>           |
| Undo Redo 🔽 Pre-Trig                                                                                                 | ger Pass Count 0            | 载入 存档 韻                               | 大省 确定 取消                      |

Trigger On: 选择 SSC, Bus Timeout 或 No Response Frame 进行触发。

Error Check:选择是否启动错误检查,可以针对 Frame Format, Parity, Bus Park / Bus Handover 的错误来触发。

**Bus Timeout:** 调整 Bus Timeout 的时间。

语句式条件触发设置:请参考总线协议语句式触发说明。



# 触发条件设置区:

| Device Address | 5h         |          |
|----------------|------------|----------|
| Command        | 38h        |          |
| Data Address   | XXXXh      |          |
| Data           |            |          |
| A3h XX         | (h XXh XXh |          |
| XXh XX         | (h XXh XXh |          |
| XXh XX         | (h XXh XXh |          |
| XXh XX         | (h XXh XXh |          |
| AUX            | Xh         | <b>–</b> |

MIPI SPMI 总线触发提供 Address, Command 和 Data 参数格式,如果无法确定待测信号内容,可先保留数据默认 don't care(X)并采集讯号,利用 LA Viewer 的 MIPI SPMI 译码功能分析后再根据内容选择。

| Timestamp    | A    | SR | Device Address(Hex) | Command (Hex)                             | Data Address - High(Hex) | Data Address - Low(Hex) | Data Frame |
|--------------|------|----|---------------------|-------------------------------------------|--------------------------|-------------------------|------------|
| -0.838595 ms | MPL3 |    | SA=00               | 38 (Extended Register Read Long: 1Bytes)  | 5C                       | 46                      | 00         |
| -0.82933 ms  | MPL3 |    | SA=00               | 30 (Extended Register Write Long: 1Bytes) | 5C                       | 46                      | 80         |
| -0.02058 ms  | MPL3 |    | SA=05               | 38 (Extended Register Read Long: 1Bytes)  | 1D                       | 40                      | 00         |
| -0.011155 ms | MPL3 |    | SA=05               | 30 (Extended Register Write Long: 1Bytes) | 1D                       | 40                      | 00         |
| -0.00293 ms  | MPL3 |    | SA=05               | 38 (Extended Register Read Long: 1Bytes)  | 1D                       | 41                      | A3         |
| 0.006135 ms  | MPL3 |    | SA=05               | 30 (Extended Register Write Long: 1Bytes) | 1D                       | 41                      | D2         |
| 3.5403 ms    | MPL3 |    | SA=00               | 38 (Extended Register Read Long: 1Bytes)  | 56                       | 46                      | 00         |
| 3.549725 ms  | MPL3 |    | SA=00               | 30 (Extended Register Write Long: 1Bytes) | 56                       | 46                      | 80         |
| 4.058525 ms  | MPL3 |    | SA=00               | 38 (Extended Register Read Long: 1Bytes)  | 57                       | 46                      | 00         |
| 4.06811 ms   | MPL3 |    | SA=00               | 30 (Extended Register Write Long: 1Bytes) | 57                       | 46                      | 80         |
| 4.343265 ms  | MPL3 |    | SA=00               | 38 (Extended Register Read Long: 1Bytes)  | 5B                       | 46                      | 00         |
| 4.352585 ms  | MPL3 |    | SA=00               | 30 (Extended Register Write Long: 1Bytes) | 5B                       | 46                      | 80         |
| 4.618265 ms  | MPL3 |    | SA=00               | 38 (Extended Register Read Long: 1Bytes)  | 5C                       | 46                      | 00         |

MIPI SPMI 译码画面



# NAND Flash 触发

## 启动 NAND Flash 触发

到「硬件参数设定」选择「NAND Flash Trigger」,如下图所示,此模式中包含 多种取样率模式可供选择。实际使用的记忆深度根据您的需求调整。

| Mode                           | Min. S/R  | Max. S/R  | Available  | Min. M | Max. Mem.  |   |
|--------------------------------|-----------|-----------|------------|--------|------------|---|
| + 📄 CAN Trigger                | Data Rate | Data Rate | Adjustable | 256    | Adjustable |   |
| + 📄 I2C Trigger                | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| + 📄 I2S Trigger                | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| SPI Trigger(800M)-9            | 800MHz    | 800MHz    | 9          | 256    | 8M         |   |
| + 🧰 SPI Trigger                | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| + 🧰 SVID Trigger               | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable | _ |
| 🗉 Serial Flash Trigger(800M)-9 | 800MHz    | 800MHz    | 9          | 256    | 8M         |   |
| + 🧰 SD/eMMC Trigger            | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| + 🚞 LPC Trigger                | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| – 🔄 NAND Flash Trigger         | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| - NAND Flash Trigger(400M)-18  | 400MHz    | 400MHz    | 18         | 256    | 4M         | _ |
| - 🗉 Transitional Storage-32    | 200MHz    | 200MHz    | Fixed      | Auto   | Auto       | = |
| NAND Flash Trigger-36          | 1Hz       | 200MHz    | Adjustable | 256    | 2M         |   |
| 🗏 NAND Flash Trigger-18        | 1Hz       | 200MHz    | Adjustable | 256    | 4M         |   |
| + 🧰 SVI2 Trigger               | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| + 🧰 USB 1.1 Trigger            | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| + 🧰 External Clock             | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
|                                |           |           |            |        |            |   |

#### 触发参数设定

按下「确定」后,点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触发条件」,点击「NAND Flash 通讯协议触发」,会出现如下图所示。



| NAND Flash 触发参数设置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | ×                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------|
| - Channel — ● ×8 — ● ×16<br>● I/O 信号自动递增<br>● I/O 信号自定义                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Run<br>State 1              | State 1<br>Logic Condition                             |
| I/O0 (LSB) CH 0 +<br>I/O [7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trigger                     | Command                                                |
| CLE CH8 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | Address      3-Byte Row Address     4-Byte Row Address |
| RE CH 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | → <u></u> Trigger           | Row XXXXXXh Column / Feature 🔽 XXXXh                   |
| R/B CH 13 · CH 14 · Flash 初始模式设置 Toggle / ONFI DDR. Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + State x 7<br>+Counter x 2 | Data Offset                                            |
| tREA >= 5.0ns       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t       t | Timer 1<br>Timer 2          | xxh xxh                                                |
| Cmds. accepted during busy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | Advanced Setting >>                                    |
| Undo Redo Pre-Trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pass Count 0 📩 载入 存         | 档 缺省 确定 取消                                             |

Channel:I/O0(LSB), CLE, ALE, RE, WE, CE, R/B, DQS.....

I/O0(LSB): 可选择 8/16 bit NAND 数据信道,若勾选 I/O 讯号自动递增 仅需设定 LSB 即可,软件会自动设定其余信道;若勾选 I/O 讯号自定义,则用户可按下旁边按键进入

通道设定画面:

| NAND Flas | ih I/O |       |         | × |
|-----------|--------|-------|---------|---|
|           |        |       |         |   |
| I/O0      | сно 🗄  | I/08  | СН 8 🖸  |   |
| I/O1      | СН 1 🕂 | I/O9  | CH 9 📩  |   |
| I/02      | сн 2 🕂 | I/010 | CH 10 🐺 |   |
| I/03      | снз 🗄  | I/011 | CH 11 🔹 |   |
| I/04      | сн 4 🕂 | I/012 | CH 12 🔹 |   |
| I/05      | сн 5 🕂 | I/013 | CH 13 🗼 |   |
| I/06      | сн 6 🕂 | I/014 | CH 14 🔹 |   |
| I/07      | сн 7 🕂 | I/015 | CH 15 🗼 |   |
|           | OK.    |       | Cancel  |   |



| I/O0 (LSB) |            | сно    |                           |
|------------|------------|--------|---------------------------|
|            | I/O [7:0]  |        | 设定 LSB = CH 0, MSB = CH 7 |
| I/O0 (LSB) |            | СН 7 . |                           |
|            | I/O [14:7] |        | 设定 LSB = CH7, MSB = CH 14 |

DQS: DDR (Double Data Rate) 模式需增加 DQS PIN, 勾选 DQS 即可设定该通

道, 默认为 SDR (Single Data Rate)。

请按照默认通道编号将 NAND Flash I/O0-I/O7 连接逻辑分析仪。

Flash 初始模式设定:

| 🔽 DQS              | CH 14  | $\frac{\cdot}{\cdot}$ |
|--------------------|--------|-----------------------|
| Flash 初始模式設定—      |        | _                     |
| 📃 Toggle / ONFI DD | R Mode |                       |

当欲触发 NAND Flash DDR 模式下之 Command / Address / Data 时,请务必勾选 DQS,并勾选 Flash 初始模式设定 Toggle / ONFI DDR Mode; 若是 SDR 模式下, 则无须理会 Flash 初始模式设定。

#### tREA / tDQSQ:

| EtREA | >= 5 | .0ns - |          | tDQSQ>= 5.0ns - | _ |
|-------|------|--------|----------|-----------------|---|
|       |      |        | <u> </u> |                 |   |
| -     |      |        | 1        |                 |   |

NAND Flash 读取数据时,并非在讯号变化缘 (Edge)去存取数据,而是在讯号变 化缘延迟一段时间之后,才去读取数据,而这段时间在 SDR 模式下为 tREA; DDR 模式下则为 tDQSQ。 此刻度单位在 200MHz 采样率下为 5ns;而 400MHz 采样率下则为 2.5ns。

图中光标 T 和光标 A 间之时间即为 tREA。



| Time/Div:  | 7.5 ns            |      |         | <b>P</b> | Ą      |          |        |          |        |          |        |          |     |
|------------|-------------------|------|---------|----------|--------|----------|--------|----------|--------|----------|--------|----------|-----|
| Acquired:  | 11:47:26.693      |      | -105 ns | 97.5 ns  | -90 ns | -82.5 ns | -75 ns | -67.5 ns | -60 ns | -52.5 ns | -45 ns | -37.5 ns | -30 |
|            |                   | Idle |         | DO:      | 00     |          | İ      | DO       | 00     |          | I      |          | DO: |
|            | 5 I/OO            |      |         |          |        |          |        |          |        |          | 1      |          |     |
|            | 6 I/O1            |      |         |          |        |          |        |          |        |          |        |          |     |
|            | 7 I/O2            |      |         |          |        |          |        |          | _      |          |        |          |     |
|            | 8 I/O3            |      | 1       |          |        | -        | ;      | 1        |        |          |        |          |     |
|            | 9 I/O4            |      |         |          |        |          |        |          |        |          |        |          |     |
| NAME FILST | 10 I/O5           |      |         |          |        |          |        |          | _      |          |        |          |     |
| NAND Hash  | 11 I/O6           |      |         |          |        |          |        |          |        |          |        |          |     |
|            | 12 I/O7           |      | <br>    |          |        | -        |        | -        |        | -        | <br>   | 1        |     |
|            | 0 CLE             |      | 1       |          |        |          | -      | -        |        | -        | <br>   | <br>     |     |
|            | 3 ALE             | L    |         |          |        |          |        |          |        |          |        | <u></u>  |     |
|            | 4 RE              |      | 10n     |          | 22.5n  |          | 7.5n   |          | 22.5n  |          | 12.    | sn L     |     |
|            | 2 WE              |      |         |          |        |          |        |          |        |          |        |          |     |
|            | 1 CE1             |      |         |          |        |          | -      |          |        | -        |        | -        |     |
| н          | and Flark 13 R/B1 |      |         |          |        |          |        |          |        |          |        |          |     |
| Data Bus   | 125               |      |         |          | 0      | )        |        |          | ¥18    | 3        | 49     | )        |     |
|            |                   |      |         |          | 1      | i.       | i.     |          |        |          |        |          |     |

图中光标 T 和光标 A 间之时间即为 tDQSQ。

| Time/Div: 7.8 | i ns     |        |            |          |        |         |       | J       |           |          |           |            |              |   |
|---------------|----------|--------|------------|----------|--------|---------|-------|---------|-----------|----------|-----------|------------|--------------|---|
| Acquired: 12: | 07:49.63 | -112.5 | ns -105 ns | -97.5 ns | -90 ns | -82.5 n | s -75 | ns -67. | 5 ns -6   | 0 ns -52 | 2.5 ns -4 | 5 ns       | -37.5 ns     | 1 |
|               |          | Id     | e }        | DO: OE   | I      | DO: 4   | 8     | DO      | : E5      | DC       | ): C3     | I          | DO: C2       | 2 |
|               | O DQO    |        |            |          |        |         | 1     | 30      | Jn        |          | 1         | .5n        |              |   |
|               | 1 DQ1    |        | 17.5n      |          |        | 27.     | 'n    |         |           | 3        | 32.5n     |            |              |   |
|               | 2 DQ2    |        | 17.5n      |          | 12.5   | in      | 1     | 7.5n    |           | 2        | 27.5n     |            |              |   |
|               | 3 DQ3    |        |            | 32.5n    |        |         |       |         |           |          | i7.5n     |            |              |   |
|               | 4 DQ4    |        |            |          |        |         |       |         |           |          |           | _          |              |   |
|               | 5 DQ5    |        |            |          |        |         | 1     | 7.5n    |           | 2        | 27.5n     |            |              |   |
| NAND Flash    | 6 DQ6    |        |            |          |        |         |       |         |           | 9        | )2.5n     |            |              |   |
|               | 7 DQ7    |        |            |          |        |         |       |         | 4         | 17.5n    |           |            |              |   |
|               | 8 CLE    |        |            |          |        |         |       |         | _         |          |           | _          |              |   |
|               | 9 ALE    |        |            |          |        |         |       |         | _         |          |           | _          |              |   |
|               | 13 W/R   |        |            | 12.5n    |        | 17.5n   |       | 12.5    | <u>in</u> | 17.      | 5n        |            | <u>12.5n</u> |   |
|               | 12 CLK   |        |            |          |        |         |       |         |           |          |           |            |              |   |
|               | 14 CE1   |        |            |          |        |         | -     |         |           |          |           | _          |              |   |
|               | 10 R/B1  |        |            |          |        |         |       |         |           | _        |           | _          |              |   |
| NandFl        | 15 DQS   |        | 15n        |          | 15n    | _       | 1     | n       |           | .5n      |           | .5n        |              |   |
| Data Pur      | 7 0      |        | OE         |          |        |         | ļ     | 55      |           | 6.2      | Ϊ.        | <b>C 1</b> |              |   |
|               | 7.0      |        | UE         |          | 48     |         | ĺ     |         | Ē 🕺       | US.      |           | σz         | ['           | l |

## Commands accepted during busy / Busy time check:



Commands accepted during busy 功能默认是启用的,按下\_\_\_\_\_会出现如下画

面:



| Co | mma  | nds accepted  | l during b  | usy    | × |
|----|------|---------------|-------------|--------|---|
|    | -Com | mands accepte | d during bu | sy     |   |
|    | 1    | 70h           | 5           | XXh    |   |
|    | 2    | FFh           | 6           | XXh    |   |
|    | 3    | 78h           | 7           | XXh    |   |
|    | 4    | 7Bh           | 8           | XXh    |   |
|    |      |               |             | _      |   |
|    |      | (             | OK          | Cancel |   |

此功能为在 NAND Flash Busy time check 启动之状态下,仍可触发 NAND Flash Command, 预设输入之 Command 为 70h / FFh / 78h / 7Bh。

若不填入任何数值,则在 Busy time check 启动之状态下的 Command 将会被忽略。

下图为触发在 Busy 状态下的 Command 70h:



Busy time check 预设是关闭的, 若要启用 Busy time check, 勾选它并按下 Setting..., 即显示设置画面:



| Busy time check                |
|--------------------------------|
| tBusy1 tBusy2 tBusy3 tBusy4 tB |
| tBusy ( Range: 0.1us - 250ms ) |
| >= 25 us                       |
| Command                        |
| 1 10h                          |
| 2 XXh                          |
| 3 XXh                          |
| 4 XXh                          |
|                                |
|                                |
| OK Cancel                      |

Busy time check 功能提供 6 组 NAND Flash Busy time 检查,每组可指定 4 组 Command, Busy time 大于等于所输入之时间即触发。 此例为 Command 10h 和 其 Busy time 大于等于 25us 即触发,如上图设定,下图为触发成功示意图: 触发于 Command 10h 和其 Busy time >= 25us 之处。



State / Event:以下为设定 State / Event 触发案例说明, 分别以触发 Command /

Address/ Data

| PAGE PROGRAM #1(80) | 0026B1 | 0000 | 7B | 9D | ED | 8A | C3 | E7 | 00 | 30 |
|---------------------|--------|------|----|----|----|----|----|----|----|----|
|                     | 0026B1 | 0008 | 26 | AO | 71 | CD | BC | 57 | EA | 25 |
|                     | 0026B1 | 0010 | 61 | 66 | 31 | 77 | 58 | AC | 39 | 56 |
|                     | 0026B1 | 0018 | 07 | BE | 9B | 63 | 74 | 36 | C5 | B8 |
|                     | 0026B1 | 0020 | 4D | C5 | 68 | FO | 3B | 84 | 58 | 14 |



为例说明。

## 触发 Command 80h:在 Event1 中的 Command 输入 80h 即触发于 Command

80h之处。

| Event 1 +OR                               |
|-------------------------------------------|
| Command                                   |
| 80h                                       |
| Address                                   |
| ● 3-Byte Row Address ● 4-Byte Row Address |
| Row XXXXXXh                               |
| Column / Feature 🔽 XXXXh                  |
| Data                                      |
| Data Offset       yxh                     |

| Time/Div: 60 r | IS        |         |                  |              |        |        |        |
|----------------|-----------|---------|------------------|--------------|--------|--------|--------|
| Acquired: 13:4 | 8:23.961  | -100 ns | ı <mark>.</mark> | 100 ns       | 200 ns | 300 ns | 400 ns |
|                | 7 1/00    | Idle    | PAGE F           | PROG. #1(80) | (      |        |        |
|                | 8 I/01    |         |                  |              |        |        |        |
|                | 9 1/02    |         |                  |              |        |        |        |
|                | 10 I/O3   |         |                  |              |        |        |        |
|                | 11 I/O4   |         |                  |              |        |        |        |
|                | 12 I/O5   |         |                  |              | + +    |        |        |
| NAND Flash     | 13 I/O6   |         |                  |              |        |        |        |
|                | 14 I/O7 🗧 |         |                  |              |        |        |        |
|                | O CLE     |         |                  |              |        |        |        |
|                | 1 ALE     |         |                  |              |        |        |        |
|                | 5 RE      |         |                  |              |        |        |        |
|                | 2 WE      |         |                  |              |        | 720n   |        |
|                | 6 CE1     |         |                  |              |        |        |        |
| NandFlash      | 4 R/B1    |         |                  |              |        |        |        |
| Data Bus       | 147       |         |                  |              |        | 80     |        |
|                |           |         |                  |              |        |        |        |

# 触发 Row Address: 0026B1h, Column Address: 0000h: 在 Event1 中的 Row 输入 0026B1h; Column 输入 0000h, 即触发于指定之 Address 之处。



| Event 1 + OR                              |
|-------------------------------------------|
| Command                                   |
| 80h                                       |
| Address                                   |
| ● 3-Byte Row Address ● 4-Byte Row Address |
| Row 0026B1h                               |
| Column / Feature 🔽 0000h                  |
| Data                                      |
| Data Offset                               |
|                                           |
| XXh XXh                                   |



触发仅 Row Address: 02E200h, 没有 Column Address: 在 Event1 中不勾选 Column 表示讯号并无 Column Address, 此例仅 Row 输入 02E200h, 即会触发于 Row Address 02E200h 之处。



| Event 1 + OR                              |
|-------------------------------------------|
| Command                                   |
| 60h                                       |
| Address                                   |
| 💿 3-Byte Row Address 🔘 4-Byte Row Address |
| Row 02E200h                               |
| Column / Feature 🔲 XXXXh                  |
| Data                                      |
| Data Offset       Xxh       Xxh           |
| loon loon                                 |

| Time/Div: 60 n | .5               |         |         |             |        |        |        |
|----------------|------------------|---------|---------|-------------|--------|--------|--------|
| Acquired: 13:4 | 8:23.961         | -100 ns | <u></u> | 100 ns      | 200 ns | 300 ns | 400 ns |
|                | 7.1/00           | Idle    | PAGE PI | ROG. #1(80) | X      |        |        |
|                | 9 1/00<br>8 1/01 |         |         |             |        |        |        |
|                | 91/02            |         |         |             |        |        |        |
|                | 10 I/O3 -        |         |         |             |        |        |        |
|                | 11 I/04 -        |         |         |             |        |        |        |
|                | 12 I/05          |         |         | + +         |        |        |        |
| NAND Flash     | 13 I/O6          |         |         |             |        |        |        |
|                | 14 I/07 🗧        |         |         |             |        |        |        |
|                | O CLE            |         |         |             |        |        |        |
|                | 1 ALE            |         |         |             |        |        |        |
|                | 5 RE             | _       |         |             |        |        |        |
|                | 2 WE             |         |         |             |        | 720n   |        |
|                |                  |         |         |             |        |        |        |
| Nand Flark     | - NODI           |         |         |             |        |        | _      |
| Data Bus       | 147              |         |         |             |        | 80     |        |
|                |                  |         |         |             |        |        |        |
|                |                  |         |         |             |        |        |        |

触发任意位置 Data: 在 Event1 中不勾选 Data Offset, 即可触发任意位置之

Data, 此例触发任意位置的 4 Byte Data: 9Dh, EDh, 8Ah, C3h。

| Event 1 +OR                               |
|-------------------------------------------|
| Command                                   |
| 80h                                       |
| Address                                   |
| ● 3-Byte Row Address C 4-Byte Row Address |
| Row XXXXXXh                               |
| Column / Feature 🔽 XXXXh                  |
| Data                                      |
|                                           |
| Data Offset                               |
| 9Dh EDh                                   |



| equired: 13:                                                                                                    | 48:23.961 | -100 ns | 🗣      | 100 ns       | 200 ns   | 300 ns | . 400 |
|-----------------------------------------------------------------------------------------------------------------|-----------|---------|--------|--------------|----------|--------|-------|
|                                                                                                                 | 7 1/00    | Idle    | PAGE F | PROG. #1(80) | (        |        |       |
|                                                                                                                 | 8 1/01    |         |        |              |          |        |       |
|                                                                                                                 | 91/02     |         |        |              |          |        |       |
|                                                                                                                 |           |         |        |              |          |        |       |
|                                                                                                                 | 11 1/04   |         |        |              | _        |        |       |
|                                                                                                                 | 121/05    |         |        |              | <u> </u> |        |       |
| JAND Flash                                                                                                      | 13 1/06   |         |        |              | _        |        |       |
|                                                                                                                 | 14 1/07   |         |        |              | _        |        |       |
|                                                                                                                 | nge –     |         |        |              |          |        |       |
|                                                                                                                 | 1 ALE     |         |        |              |          |        |       |
|                                                                                                                 | 5 RE      |         |        |              |          |        |       |
|                                                                                                                 | 2 WE      |         |        |              |          | 720n   |       |
|                                                                                                                 | 6 CE1     |         |        |              |          |        |       |
| NeedEl                                                                                                          | 4 R/B1    |         |        |              |          |        |       |
| The second second second second second second second second second second second second second second second se |           |         |        |              |          |        |       |
| Data Bus                                                                                                        | 147       |         |        |              |          | 80     |       |

**触发指定位置 Data:** 在 Event1 中 Data 勾选 Data Offset,即可触发指定位置之 Data,此例指定触发写入 NAND Flash 的前 4 个 Byte Data: 7Bh, 9Dh, EDh, 8Ah

| 1                                         |  |  |  |  |  |
|-------------------------------------------|--|--|--|--|--|
| Event 1 + OR                              |  |  |  |  |  |
| Command                                   |  |  |  |  |  |
| 80h                                       |  |  |  |  |  |
| Address                                   |  |  |  |  |  |
| ⊙ 3-Byte Row Address ○ 4-Byte Row Address |  |  |  |  |  |
| Row XXXXXh                                |  |  |  |  |  |
| Column / Feature 🔽 XXXXh                  |  |  |  |  |  |
| Data                                      |  |  |  |  |  |
| □ Data Offset                             |  |  |  |  |  |
| 78h 9Dh                                   |  |  |  |  |  |
| 0 1                                       |  |  |  |  |  |
| EDh 8Ah                                   |  |  |  |  |  |
| 2 3                                       |  |  |  |  |  |

| Time/Div: 60  | ns        |         | <b>I</b> |            |        |        |        |
|---------------|-----------|---------|----------|------------|--------|--------|--------|
| Acquired: 13: | 48:23.961 | -100 ns |          | 100 ns     | 200 ns | 300 ns | 400 ns |
|               | 7.1(00    | Idle    | PAGE PRO | )G. #1(80) | X      |        |        |
|               | 81/01     |         |          |            |        |        |        |
|               | 9 1/02    |         |          |            |        |        |        |
|               | 10 I/O3   |         |          |            |        |        |        |
|               | 11 I/O4   |         |          |            |        |        |        |
|               | 12 I/O5   |         |          |            | + +    |        |        |
| NAND Flash    | 13 I/O6   |         |          |            |        |        |        |
|               | 14 I/O7   |         |          |            |        |        |        |
|               | 0 CLE     |         |          |            |        |        |        |
|               | 1 ALE     |         |          |            |        |        |        |
|               | 5 RE      | _       |          |            |        |        |        |
|               | 2 WE      |         |          |            |        | 720n   |        |
|               |           |         |          |            |        |        |        |
| NandFla       | A NOT     |         |          |            |        |        | -      |
| Data Bus      | 147       |         |          |            |        | 80     |        |
|               |           |         |          |            |        |        |        |



# SD/eMMC 触发

## 启动 SD/eMMC 触发

到「硬件参数设定」选择「SD/eMMC Trigger」,如下图所示,此模式中包含多种取样率模式可供选择。实际使用的记忆深度根据您的需求调整。

| Mode                             | Min. S/R | Max. S/R | Available  | Min. M | Max. Mem.  |          |
|----------------------------------|----------|----------|------------|--------|------------|----------|
| + 📄 I2S Trigger                  | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |          |
| SPI Trigger(800M)-9              | 800MHz   | 800MHz   | 9          | 256    | 8M         |          |
| + 🚞 SPI Trigger                  | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |          |
| + 🚞 SVID Trigger                 | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |          |
| Serial Flash Trigger(800M)-9     | 800MHz   | 800MHz   | 9          | 256    | 8M         |          |
| – 🔄 SD/eMMC Trigger              | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |          |
| _                                | 1.6GHz   | 1.6GHz   | 4          | 256    | 16M        |          |
| SD/eMMC Trigger(800M)-9          | 800MHz   | 800MHz   | 9          | 256    | 8M         |          |
| SD/eMMC Trigger(400M)-18         | 400MHz   | 400MHz   | 18         | 256    | 4M         |          |
| SD/eMMC Transitional Storage-32  | 200MHz   | 200MHz   | Fixed      | Auto   | Auto       | =        |
| ■ SD/eMMC Transitional Storage-8 | 200MHz   | 200MHz   | Fixed      | Auto   | Auto       |          |
| SD/eMMC Trigger-36               | 1Hz      | 200MHz   | Adjustable | 256    | 2M         |          |
| SD/eMMC Trigger-18               | 1Hz      | 200MHz   | Adjustable | 256    | 4M         |          |
| SD/eMMC Trigger-12               | 1Hz      | 200MHz   | Adjustable | 256    | 6M         |          |
| SD/eMMC Trigger-9                | 1Hz      | 200MHz   | Adjustable | 256    | 8M         |          |
| SD/eMMC Trigger-6                | 1Hz      | 200MHz   | Adjustable | 256    | 12M        |          |
| SD/eMMC Trigger-4                | 1Hz      | 200MHz   | Adjustable | 256    | 18M        |          |
| + C IPC Trigger                  | 1117     | 200MUz   | Adjuctable | 256    | Adjuctable | <b>T</b> |

#### 触发参数设定

按下「确定」后,点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触发条件」,点击「SD/eMMC 通讯协议触发」,会出现如下图所示。



| Channel       Run       True         CLX       CH0       CH1       CH1         DATA0       CH2       CH1       False         Protocol       False       Command       Response         CMD only       State 3       Trigger         C CMD only       Trigger       Trigger         C CMD only       Trigger       Trigger         C CMD only       Trigger       Command       Command         Data Address(23:161)       Oth       Command       Command         Data Address(23:161)       Oth       Bata Address(23:161)       Command         Contol Trigger       Host -> Card Ons       Card -> Host 2.5ns       Timer 1         Card -> Host 2.5ns       Timer 1       Timer 2       <         Cord Chard Gentions       Timer 1       Timer 2       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SD/eMMC 觸發參數設定                                                                                                                                                                                                 |                                                                                                                                                                                                                                                      | ? <mark>X</mark>     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Second system       Image: Second system         Image: Secon | $\begin{array}{c c} Channel & & & \\ CLK & CH 0 & & \\ CMD & CH 1 & & \\ DATA0 & CH 2 & & \\ \hline \\ Protocol & & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$ | State 1       Logic Condition © OR C AND         Event 1 + OR       AND Timer 1         © Command © Response       AND Timer 2 < ▼                                                                                                                   | 5.000 ns<br>5.000 ns |
| tODLY Time     + Counter x 2       Host -> Card 0ns     CRC       Card -> Host 2.5ns     Timer 1       Timer 2     << Advanced Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ✓ Idle Period ✓ Idle Period ★ State x 5                                                                                                                                                                        | S T       Command         0 1       18         Data Address[31:24]       Cmd 18 -         00h       READ_MULTIPLE_BLOCK         Data Address[23:16]       00h         Data Address[15:8]       40h         Data Address[7:0]       Data Address[7:0] |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -tODLY Time + Counter x 2 Host -> Card 0ns Card -> Host 2.5ns Card -> Host 2.5ns CRC Check Settings                                                                                                            | OCh       CRC       XXh       1 <td></td>                                                                                                                                                                                                            |                      |

#### 1. Channel: 选择通道, SD/eMMC 触发包含 CLK、CMD、DATA0 三个通道。

| Protocol |        |  |  |  |
|----------|--------|--|--|--|
| SD       | eMMC   |  |  |  |
| CMD only |        |  |  |  |
| CMD      | + RESP |  |  |  |
|          |        |  |  |  |

| Command                   | Response                      | Argument   | CRC7 |
|---------------------------|-------------------------------|------------|------|
| CMD18:READ_MULTIPLE_BLOCK |                               | 000A 8000h | 17h  |
|                           | R1 :CMD18:READ_MULTIPLE_BLOCK | 0000 0900h | 69h  |
| CMD12:STOP_TRANSMISSION   |                               | 0000 0000h | 30h  |
|                           | R1b:CMD12:STOP_TRANSMISSION   | 0000 0B00h | 3Fh  |

SD/eMMC 通讯协议选择会影响后方参数域名及 CRC 确认规则。

以上图为例:

选择 CMD only 时仅需设定两阶层触发 CMD18->CMD12

选择 CMD + RESP 时, 需设定三阶层触发 CMD18->R1(CMD18)->CMD12

预设选择 Protocol SD + CMD only.

Idle Period:

输入 Idle Period 可以协助 LA 的触发模块更容易辨识出每一个封包的开头, 最小

值为 1us, 最大值为 1S, 也可以关闭不使用此功能, 默认值为 100ms。

tODLY (Output delay) Time:

根据量测点的不同,须调整 Host to Card 及 Card to Host 的延迟时间才能准确的定



位到波形, Host to Card 预设为 0, Card to Host 预设为 1.875ns。

Check CRC Error:

提供撷取 CRC7 及 CRC16 错误判断的功能,与 SD/eMMC 条件式判断为平行架构,触发条件与 CRC 错误检查何者条件先满足就会触发,按下后将会开启进阶设定窗口。

| D/eMMC CRC Check Settings                         |  |  |  |  |  |
|---------------------------------------------------|--|--|--|--|--|
| Channel                                           |  |  |  |  |  |
| DATA0 Ch 2 DATA1 Ch 3 + DATA2 Ch 4 + DATA3 Ch 5 + |  |  |  |  |  |
| AUX Ch 6 T Disable CRC Check When AUX is LOW      |  |  |  |  |  |
| Check CMD (CRC7) Error                            |  |  |  |  |  |
| Check DATA (CRC16) Error                          |  |  |  |  |  |
| 🌀 4-Bit Data 🛛 🔎 Data DDR Mode                    |  |  |  |  |  |
| Block Length 512  Bytes                           |  |  |  |  |  |
| Write CMD List For CRC Check                      |  |  |  |  |  |
| Group 1 Cmd 24 💌 Group 2 Cmd 25 💌                 |  |  |  |  |  |
| Gourp 3 Cmd 24 ▼ Group 4 Cmd 24 ▼                 |  |  |  |  |  |
| Read CMD List For CRC Check                       |  |  |  |  |  |
| Group 1 Cmd 17 💌 Group 2 Cmd 18 💌                 |  |  |  |  |  |
| Group 3 Cmd 17  Group 4 Cmd 17  Group 4           |  |  |  |  |  |
| Default OK Cancel                                 |  |  |  |  |  |

Channel: 设定 CRC Check 所需使用的通道, 及是否根据 Aux PIN 的输入关闭 CRC 检查

Check CMD (CRC7) Error: 开启 Command line 的 CRC 检查

Check DATA (CRC16) Error: 开启 DATA line 的 CRC 检查, 需要再进一步设定

底下数据长度及输入 R/W 各四组需要检查 CRC 的 CMD, 预设检查 CMD17、18

(Read), CMD24 \ 25(Write)

2. 语句式条件触发设定:请参考总线协议语句式触发说明

3. 触发条件设定区



| Command C Respo                                              | onse                 |
|--------------------------------------------------------------|----------------------|
| Cmd 13 - SEND_STATUS                                         | •                    |
| $DATA0 = \boxed{X  0  1}$                                    | User Defined         |
| S         T         Command           0         1         13 | Command              |
| RCA[15:8]<br>E6h                                             | Cmd 13 - SEND_STATUS |
| RCA[7:0]<br>24h                                              |                      |
| Stuff Bits[15:8]<br>00h                                      |                      |
| Stuff Bits[7:0]<br>00h                                       |                      |
| CRC E<br>XXh 1                                               |                      |
|                                                              |                      |

SD/eMMC 总线触发提供各种 Command, Response 参数格式,如果无法确定待测 讯号内容,可先选择 Any Command 撷取讯号,利用 LA Viewer 的 SD/eMMC 译 码功能分析后再根据内容选择。

| Timestamp      | Command                   | Response                      | Data       | CRC7 | Information |
|----------------|---------------------------|-------------------------------|------------|------|-------------|
| 0.011239375 ms | CMD18:READ_MULTIPLE_BLOCK |                               | 0042 59C0h | 6Ah  |             |
| 0.011560625 ms |                           | R1 :CMD18:READ_MULTIPLE_BLOCK | 0000 0900h | 69h  |             |
| 0.413851875 ms | CMD12:STOP_TRANSMISSION   |                               | 0000 0000h | 30h  |             |
| 0 414173125 mg |                           | R1b.CMD12.STOP_TRANSMISSION   | 0000 0B00b | 3Fh  |             |
| 0.976969375 ms | CMD13:SEND_STATUS         |                               | E624 0000h | 38h  |             |
| 0.977285 ms    |                           | R1 :CMD13:SEND_STATUS         | 0000 0900h | 1Fh  |             |
| 0.98829625 ms  | CMD18:READ_MULTIPLE_BLOCK |                               | 0042 5CC0h | 4Dh  |             |
| 0.9886175 ms   |                           | R1 :CMD18:READ_MULTIPLE_BLOCK | 0000 0900h | 69h  |             |
| 1.330894375 ms | CMD12:STOP_TRANSMISSION   |                               | 0000 0000h | 30h  |             |
| 1.331215625 ms |                           | R1b:CMD12:STOP_TRANSMISSION   | 0000 0B00h | 3Fh  |             |
| 2.150086875 ms | CMD13:SEND_STATUS         |                               | E624 0000h | 38h  |             |
| 2.1504025 ms   |                           | R1 :CMD13:SEND_STATUS         | 0000 0900h | 1Fh  |             |
| 2.161419375 ms | CMD18:READ_MULTIPLE_BLOCK |                               | 0043 4000h | 0Ah  |             |
| 2.161740625 ms |                           | R1 :CMD18:READ_MULTIPLE_BLOCK | 0000 0900h | 69h  |             |

SD/eMMC 解碼画面

其他参数设定说明如下:

DAT0 = X 0 1 可以选择是否参考 DAT0 数值作触发。

设定字段可填入所需触发的参数,亦可填入X代表任意值。

在输入十六进制参数时需以h作为结尾,二进制参数时则需以b作为结尾,十进制时则不需要特别加上结尾字符。



将输入光标移至各字段时,根据字段不同会跳出可供选择的选项,在右方说明字 段则会显示该字段的说明信息。

选择触发 Responses 时需注意此触发没有辨别各 Response 的能力, Response 选择 仅用以提供字段分割显示, 实际触发仍会根据使用者输入的数值作触发。

User Defined 可提供使用者自定义参数,所定义的参数将会存于触发参数中,可藉由发送波形档将此自定义值提供给他人使用。

自定义参数设定画面如下:

| Command        | Description |
|----------------|-------------|
| (Double Click) |             |
| (Double Click) |             |
| (Double Click) |             |
| Cmd 21         | MyDef1      |
| (Double Click) |             |
| (Double Click) |             |
| (Double Click) |             |
| Cmd 40         | Test1       |
| (Double Click) |             |
| Cmd 63         | TestCmd     |
| (Double Click) |             |
| (Double Click) |             |
|                |             |

| Command I | Description | ×  |
|-----------|-------------|----|
| Cmd 21    |             |    |
|           | 確定          | 取消 |

此设定画面提供 16 个可定义字段,每个字段可包含 8 个字符。双击任意字段后 将会开启右方输入窗口,选择 Cmd 种类及输入自定义描述后即可将数据存于触 发参数中。

4. 时间(Timer)与计数器(Counter)设定: 请参考总线协议语句式触发说明

5. Redo/Undo 功能钮:可以在用户输入后记录目前的输入信息,提供用户回复上 一步/重作下一步的功能


## Serial Flash 触发

#### 启动 Serial Flash 触发

到「硬件参数设定」选择「Serial Flash Trigger」,如下图所示。此模式使用取样率 800MHz,9通道模式。

| Mode                         | Min. S/R  | Max. S/R  | Available  | Min. M | Max. Mem.  | • |
|------------------------------|-----------|-----------|------------|--------|------------|---|
| ■ 800M                       | 800MHz    | 800MHz    | 9          | 256    | 8M         |   |
| ≝ 400M                       | 400MHz    | 400MHz    | 18         | 256    | 4M         |   |
| + 🧰 200M                     | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| + 🧰 UART Trigger             | Baud Rat  | Baud Rat  | Adjustable | 256    | Adjustable | _ |
| + 🧰 CAN Trigger              | Data Rate | Data Rate | Adjustable | 256    | Adjustable |   |
| + 🧰 I2C Trigger              | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| + 🧰 I2S Trigger              | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| SPI Trigger(800M)-9          | 800MHz    | 800MHz    | 9          | 256    | 8M         |   |
| + 🧰 SPI Trigger              | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| + 🧰 SVID Trigger             | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable | - |
| Serial Flash Trigger(800M)-9 | 800MHz    | 800MHz    | 9          | 256    | 8M         | = |
| + 🧰 SD/eMMC Trigger          | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| + 🚞 LPC Trigger              | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| 🔹 🧰 NAND Flash Trigger       | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| + 🧰 SVI2 Trigger             | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| + 🧰 USB 1.1 Trigger          | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable |   |
| + 🧰 External Clock           | 1Hz       | 200MHz    | Adjustable | 256    | Adjustable | _ |
|                              |           |           |            |        |            |   |

#### 触发参数设定

按下「确定」后,点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触发条件」,点击「Serial Flash 通讯协议触发」,会出现如下图所示。



| Serial Flash / SPI-NAND                                               | Flash Trigger Settings                                 | _ <mark>3</mark>                                                                                                                                     |
|-----------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Channel CS# CH 0<br>SCLK CH 1<br>SI/SIO0 CH 2<br>CH 2<br>CH 2<br>CH 1 | Run<br>State 1<br>Ti T2<br>State 2<br>Ti T2<br>Ti gger | State 3<br>Logic Condition © OR © AND<br>Event 1 + OR<br>- S D Q Command<br>Single Mode                                                              |
| SO/SIO1 CH 3<br>WP#/SIO2 CH 4<br>Hold#/SIO3 CH 5<br>V                 | State 3                                                | Single Mode<br>8 Cycles = 0Bh AND XXh<br>- S D Q Address                                                                                             |
| CS# Glitch Trigger                                                    | -4 Trigger   <sup>×</sup>                              | 16b     24b     32b     =     xxx0000h       Quad Mode     0     0     0       6 Cycles     2     -     0                                            |
| ✓ tSHSL - 5 ns                                                        | + State x 5<br>+ Counter x 2                           | -     S     D     Q     Data       Quad Mode     ▼     Data Offset     0     ▲       4 I/O Data       ○     In     ●     Out     0     1     2     3 |
| Undo Redo                                                             | ▼ Pre-Trigger Pass Count 0 ←                           | Advanced Setting >><br>載入 存檔 重設 確定 取消                                                                                                                |

- 1. Channel: 选择通道,根据不同模式可使用四到六个通道。
- 2. 语句式条件触发:请参考总线协议语句式触发说明。
- 3. 触发条件设定区:此区会显示左方触发流程中各个阶层内所包含的详细触发条
  - 件:

| - SDQ<br>Single Mode<br>8 Cycles | Command                   |
|----------------------------------|---------------------------|
| - <mark>S</mark> D Q             | Address                   |
| 16b 24b 32b                      | = 000000h                 |
| Single Mode                      | Dummy cycles              |
| 21 0/000                         | 8 🔹 Dummy cycle           |
| - <b>S D Q</b>                   | Data                      |
| Single Mode                      | ▼ Data Offset 0 → Byte(s) |
| 1 I/O Data                       | = FFh XXh XXh XXh         |



| Idle | e (0B) | AST_READ | Addr:00 | Addr:00 | Addr:00 | DMY:00 | DQ:FF | 1  |
|------|--------|----------|---------|---------|---------|--------|-------|----|
|      |        |          |         |         |         |        |       |    |
|      |        | 2.314u   | 972.5r  |         | 593.75  |        |       | 1. |
|      | U L    |          |         |         |         | Г      |       |    |
|      |        |          |         |         |         |        |       |    |
|      |        |          |         |         |         |        |       |    |

设定参数时需注意工作模式的选择,拖曳滑杆以选择工作模式

| - S D Q    | - SDQ       | - S D Q   | - SDQ     |
|------------|-------------|-----------|-----------|
|            | Single Mode | Dual Mode | Quad Mode |
|            | 8 Cycles    | 4 Cycles  | 2 Cycles  |
| Don't Care | Single Mode | Dual Mode | Quad Mode |

于 Command、Address、Data 等字段输入指定的触发数值,或是保留"X"代表 任意值。

点选切换 ✓ Data Offset - 开启比对指定地址 Data 功能, 开启后可以拖动拉杆调整 Data 字段比对的起始位置, 如上图调整为0, 输入FFh XXh XXh XXh 就会触发在 Data 0 = FFh 且 Data 1,2,3 = Any 的位置。

若有输入和 Data 字段相关的触发时,必须确认波形内是否有 Dummy Cycles,如 上图所示, Dummy Cycle 的长度为 8 Clocks,则将拉杆移至 8 Cycles.

按下设定区的=按钮可以将各触发条件分别切换为 NOT 触发≠,选择 NOT 触发 ,选择 NOT 触发时可以一次输入两组 Command 作为触发项目。

- 4. CS Glitch Trigger:此设定可以开启触发 CS 噪声功能,和语句式条件触发为平行架构,何者先发生就会触发在该位置。设定时可分别针对 High Pulse 及 Low Pulse 作触发,最小刻度为 0.625ns,最大值为 80ns
- 5. tSHSL及tCLQV设定:调整拉杆设定tSHSL及tCLQV可以使触发更为贴近IC的运作模式,也可以取消勾选忽略tSHSL的设定值,需要注意的是若tCLQV数值设定错误有可能导致Data字段的触发失败。
- Redo/Undo 功能钮: Redo/Undo 功能钮可以在用户输入后记录目前的输入信息, 提供用户回复上一步/重作下一步的功能



## SMBus/PMBus 触发

#### 启动 SMBus/PMBus 触发

到「硬件参数设定」选择「SMBus/PMBus Trigger」,如下图所示。实际使用的记忆深度根据您的需求调整。

| Mode                           | Min. S/R | Max. S/R | Available ch. | Min. Mem. | Max. Mem.  |   |
|--------------------------------|----------|----------|---------------|-----------|------------|---|
| 🛨 🧰 SVID Trigger               | 1Hz      | 200MHz   | Adjustable    | 256       | Adjustable |   |
| 🗒 Serial Flash Trigger(800M)-9 | 800MHz   | 800MHz   | 9             | 256       | 8M         |   |
| 王 🧰 SD/eMMC Trigger            | 1Hz      | 200MHz   | Adjustable    | 256       | Adjustable |   |
| 🛨 🧰 LPC Trigger                | 1Hz      | 200MHz   | Adjustable    | 256       | Adjustable |   |
| 🛨 🧰 NAND Flash Trigger         | 1Hz      | 200MHz   | Adjustable    | 256       | Adjustable |   |
| 🛨 🧰 SVI2 Trigger               | 1Hz      | 200MHz   | Adjustable    | 256       | Adjustable |   |
| 🖃 🔄 SMBus/PMBus Trigger        | 1Hz      | 200MHz   | Adjustable    | 256       | Adjustable |   |
| - Transitional Storage-32      | 200MHz   | 200MHz   | Fixed         | Auto      | Auto       |   |
| - Transitional Storage-8       | 200MHz   | 200MHz   | Fixed         | Auto      | Auto       |   |
| - SMBus/PMBus Trigger-36       | 1Hz      | 200MHz   | Adjustable    | 256       | 2M         |   |
| - SMBus/PMBus Trigger-18       | 1Hz      | 200MHz   | Adjustable    | 256       | 4M         |   |
| - SMBus/PMBus Trigger-12       | 1Hz      | 200MHz   | Adjustable    | 256       | 6M         |   |
| - 🗐 SMBus/PMBus Trigger-9      | 1Hz      | 200MHz   | Adjustable    | 256       | 8M         |   |
| - 🗒 SMBus/PMBus Trigger-6      | 1Hz      | 200MHz   | Adjustable    | 256       | 12M        |   |
| - 🖾 SMBus/PMBus Trigger-4      | 1Hz      | 200MHz   | Adjustable    | 256       | 18M        |   |
| 🛨 🧰 USB 1.1 Trigger            | 1Hz      | 200MHz   | Adjustable    | 256       | Adjustable | - |

#### 触发参数设定

按下「确定」后,点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触发条件」,点击「SMBus/PMBus 通讯协议触发」,会出现如下图所示。



| SMBus/PMBus 触发参数设置                                                              |                  | ×                               |
|---------------------------------------------------------------------------------|------------------|---------------------------------|
| Channel SMB/PMBCLK CH 1 SMB/PMBDAT CH 0 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 | Run<br>State 1   | State 1 Logic Condition OR CAND |
|                                                                                 | + State × 7      | Data                            |
| Triggers                                                                        | +Counter x 2     |                                 |
|                                                                                 | Time 4           |                                 |
|                                                                                 | Timer 1          | AUX-                            |
| None Group Command                                                              |                  | ,                               |
| C Group Command                                                                 |                  | Advanced Setting >>             |
| Undo Redo 🔽 Pre-Trig                                                            | ger Pass Count 0 | 载入 存档 缺省 确定 取消                  |

Channel: 选择通道 SMBus/PMBus 触发包含 SMB/PMBCLK, SMB/PMBDAT 以

及 AUX 在内总共使用三个通道。其中 AUX 可选择是否使用。

Protocols Select: 选择通讯协议,分为 SMBus 和 PMBus,其中 SMBus 又分为

SMBus/SBS/SPD, SPD 又分为 DDR3/DDR2/DDR/SPD SDRAM。

Triggers: 提供 Repeat Start / Stop / ACK / NACK 以及 Check PEC 触发, Check

PEC 分为 None Group Command / Group Command。

Redo / Undo: Redo / Undo 功能可以在用户输入后记录目前的输入信息,提供用

户回复上一步 / 重作下一步的功能。

触发条件设定区



| Fields             |                           |
|--------------------|---------------------------|
| Address            | Write X V                 |
| Command            | ACK 🔽                     |
| Data<br>ACK<br>2Ch | ACK NACK X<br>01h 8Eh XXh |

可触发 Address / Command / Data 和其 Wr/Rd 以及 Acknowledge。



## SVI2 触发

#### 启动SVI2触发

到「硬件参数设定」选择「SVI2 Trigger」,如下图所示。实际使用的记忆深度 根据您的需求调整。

| Mode                         | Min. S/R | Max. S/R | Available  | Min. M | Max. Mem.  |   |
|------------------------------|----------|----------|------------|--------|------------|---|
| + 🚞 SPI Trigger              | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| + 🚞 SVID Trigger             | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| Serial Flash Trigger(800M)-9 | 800MHz   | 800MHz   | 9          | 256    | 8M         |   |
| + 🚞 SD/eMMC Trigger          | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| + 🧰 LPC Trigger              | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| + 🧰 NAND Flash Trigger       | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| – 🔄 SVI2 Trigger             | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| Transitional Storage-32      | 200MHz   | 200MHz   | Fixed      | Auto   | Auto       |   |
| Transitional Storage-8       | 200MHz   | 200MHz   | Fixed      | Auto   | Auto       |   |
| SVI2 Trigger-36              | 1Hz      | 200MHz   | Adjustable | 256    | 2M         |   |
| SVI2 Trigger-18              | 1Hz      | 200MHz   | Adjustable | 256    | 4M         |   |
| SVI2 Trigger-12              | 1Hz      | 200MHz   | Adjustable | 256    | 6M         | Ξ |
| E SVI2 Trigger-9             | 1Hz      | 200MHz   | Adjustable | 256    | 8M         |   |
| SVI2 Trigger-6               | 1Hz      | 200MHz   | Adjustable | 256    | 12M        |   |
| SVI2 Trigger-4               | 1Hz      | 200MHz   | Adjustable | 256    | 18M        |   |
| + 🚞 USB 1.1 Trigger          | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| + 🚞 External Clock           | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
|                              |          |          |            |        |            |   |

#### 触发参数设定

按下「确定」后,点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触发条件」,点击「SVI2 通讯协议触发」,会出现如下图所示。



| Channel   SVC   CH 1   SVD   CH 1   SVT   CH 2   AUX   CH 3   CH 4   SVT   CH 2   AUX   CH 3   CH 4   SVT   CH 2   AUX   CH 3   CH 4   SVD   CH 4   SVT   CH 2   AUX   CH 3   CH 4   SVD   SVD   CH 4   SVD   SVD   CH 4   SVD   5¥12 触发参数设置                                                                                                                            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Timer 1<br>Timer 2<br>Timer 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SV12 触发参数设置<br>Channel<br>SVC CH 0 平<br>SVD CH 1 平<br>SVT CH 2 平<br>AUX CH 3 平<br>Error Detect<br>SVD Packet Error<br>SVT Packet Error | Run     True       State 1     Logic Condition       State 1     False       Trigger     SVD Packet       VDD     VDDNB       PSII_L     TFN       Xh     Xh       Xh     Xh       SVID     AND       SVID     AND       SVID     AND       SVID     AND       SVID     AND       SVID     AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Indo     Redo     ✓     ✓     ▲       Indo     Redo     ✓     ●     ●     ●       ●     ●     ●     ●     ●     ●                                                                                                                                                                                                                                                                                                                                                                                                                                 | Undo Redo                                                                                                                              | Counter x 2     SVT1 SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SVT0     SV |

Channel: 选择通道 ·SVI2 触发包含 SVC, SVD, SVT 以及 AUX 在内总共使用四个通道。其中 SVT 和 AUX 可选择是否使用,SVT 预设是使用的; AUX 预设 是不使用。

**Error Detect:** SVI2 协议错误侦测功能 SVD/SVT Packet Error 会侦测其封包大 小是否正确 SVD 封包大小为 27 bits; SVT 封包大小为 20 bits SVD Packet Error 除了侦测其封包大小是否正确之外,还会检查其封包中 Bit Time 1:5 是否为 11000b 以及 Bit Time 8 是否为 0b。

**Redo / Undo:** Redo / Undo 功能可以在用户输入后记录目前的输入信息,提供用 户回复上一步 / 重作下一步的功能。

**触发条件设定区:** 触发条件设定区可设定触发 SVI2 之 SVD Packet 和 SVT Packet。



## 触发 SVD Packet:

| SVD Packet            | VDDNB        | PSI0_L   |
|-----------------------|--------------|----------|
| = Oh Not VDD          | Oh Not VDDNE | 3 🔻 1h 💌 |
| PSI1_L                | TEN          |          |
| 1h 🔹                  | • 1h         | -        |
| Load Line Slope       | e Trim       |          |
| 3h Initial LL Sl      | оре          | <b>▼</b> |
| Offset Trim           |              | _        |
| 2h Use Initial        | Offset       | •        |
| SVID                  | AND          |          |
| <b>=</b> 0.60000V (98 | h)           | •        |

| l | Timestamp   | VDD    | VDDNB | SVID Code     | PSI | TFN | Slope Trim          | Offset Trim           | SVT | Volt | Volt/Current |
|---|-------------|--------|-------|---------------|-----|-----|---------------------|-----------------------|-----|------|--------------|
|   | -0.00144 ms | 0      | 0     | 0.60000V (98) | 3   | 1   | Initial LL Slope(3) | Use Initial Offset(2) | )   |      |              |
|   | 0.016945 ns | VDD(1) | 0     | 1.30000V (28) | 3   | 0   | Initial LL Slope(3) | Use Initial Offset(2) |     |      |              |

### 触发 SVT Packet:



| Timestamp    | VDD | VDDNB | SVID Code | PSI | TFN | Slope Trim | Offset Trim | SVT | Volt           | Volt/Current   |  |
|--------------|-----|-------|-----------|-----|-----|------------|-------------|-----|----------------|----------------|--|
| -0.001175 ms |     |       |           |     |     |            |             | 3   | 1.33750V (122) | 1.15625V (13F) |  |
| 0.018485 ns  |     |       |           |     |     |            |             | 3   | 1.16250V (13E) | 1.15000V (140) |  |
| 0.038145 ns  |     |       |           |     |     |            |             | 3   | 0.97500V (15C) | 1.15000V (140) |  |

### 触发 VOTF Complete + AUX High:





| Timestamp    | Offset Trim | SVT | Volt           | Volt/Current   | Error | Description    |
|--------------|-------------|-----|----------------|----------------|-------|----------------|
| -0.014045 ms |             | 3   | 0.97500V (15C) | 1.15000V (140) |       | Voltage Only   |
| -0.00029 ms  |             | 2   |                |                |       | VOTF Complete) |
| 0.00561 ms   |             | 3   | 0.75625∀ (17F) | 1.15000V (140) |       | Voltage Only   |

| Time/Div | : 30 ns   |         |         |         |            |          |              |       | <b>P</b> |
|----------|-----------|---------|---------|---------|------------|----------|--------------|-------|----------|
| Acquired | : 10:59:2 | -350 ns | -300 ns | -250 ns | -200 ns -1 | 50 ns -1 | 00 ns -50    | )ns ( |          |
| SVC      | D         |         |         |         | 30n        | 20n 30n  | 20n 30n      |       |          |
| SVD      | 1         |         |         |         |            |          |              |       |          |
| SVT      | 2         |         |         | 125n    |            | 50n      | 85n          |       |          |
|          |           | Idle    |         |         | S          | SVT      | 1: 1 SVTO: O | Р     |          |
| SVI2     | o svc     |         |         |         |            | 20n 30n  | 20n 30n      |       |          |
|          | 1 SVD     |         |         |         |            |          |              |       |          |
|          | SW2 2 SVT |         |         | 125n    |            | 50n      | 85n          |       |          |
| AUX      | 3         |         |         |         | 3          | 70n      |              |       | L        |

## 其他参数设定说明:

触发 SVD Packet 中的 VDD, VDDNB ...Offset Trim 之**三**按钮可切换为**三**/**≠**等 不同的条件。

触发 SVD Packet 中的 SVID 之 = 按钮可切换为 = ≠ > ≤ 等不同的条件。

触发 SVT Packet 中的 SVT1, SVT0 之**二**按钮可切换为**三/**关等不同的条件。

触发 SVT Packet 中的 VDD Voltage / VDDNB Voltage 之 =按钮可切换为 =/≠



# USB1.1 触发

#### 启动USB1.1触发

到「硬件参数设定」选择「USB1.1 Trigger」,如下图所示。实际使用的记忆深

度根据您的需求调整。

| Mode                         | Min. S/R | Max. S/R | Available  | Min. M | Max. Mem.  |   |
|------------------------------|----------|----------|------------|--------|------------|---|
| + 🚞 SPI Trigger              | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| + 🧰 SVID Trigger             | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| Serial Flash Trigger(800M)-9 | 800MHz   | 800MHz   | 9          | 256    | 8M         |   |
| + 📄 SD/eMMC Trigger          | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| 🛨 🧰 LPC Trigger              | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| + 🧰 NAND Flash Trigger       | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| + 📄 SVI2 Trigger             | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| – 🔄 USB 1.1 Trigger          | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable |   |
| - 🗐 Transitional Storage-32  | 200MHz   | 200MHz   | Fixed      | Auto   | Auto       |   |
| - 🗏 Transitional Storage-8   | 200MHz   | 200MHz   | Fixed      | Auto   | Auto       |   |
| USB 1.1 Trigger-36           | 1Hz      | 200MHz   | Adjustable | 256    | 2M         |   |
| USB 1.1 Trigger-18           | 1Hz      | 200MHz   | Adjustable | 256    | 4M         | = |
| USB 1.1 Trigger-12           | 1Hz      | 200MHz   | Adjustable | 256    | 6M         |   |
| USB 1.1 Trigger-9            | 1Hz      | 200MHz   | Adjustable | 256    | 8M         |   |
| USB 1.1 Trigger-6            | 1Hz      | 200MHz   | Adjustable | 256    | 12M        |   |
| 🔲 USB11 Trigger-4            | 1Hz      | 200MHz   | Adjustable | 256    | 18M        |   |
| + 🚞 External Clock           | 1Hz      | 200MHz   | Adjustable | 256    | Adjustable | - |
|                              |          |          |            |        |            |   |

#### 触发参数设定

按下「确定」后,点击工具栏上的「触发条件」或是从菜单的「硬件」点击「触发条件」,点击「USB1.1 通讯协议触发」,会出现如下图所示。



| USB1.1 觸登參數設定                                                               |                                  |                          | ×                                                  |
|-----------------------------------------------------------------------------|----------------------------------|--------------------------|----------------------------------------------------|
| Channel D+ CH 0 CH 0 CH 1 CH 1 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2      | Run<br>State 1<br>False<br>Trigg | er Field:<br>Fran<br>Num | Logic Condition OR C AND                           |
| Triggers<br>Enter Suspend (Idle > 3 ms)<br>Exit Suspend (Exit idle > 10 ms) | Trigger                          | Add                      | ress XXh                                           |
| CRC-5 XXh CRC-16 XXXxh Error Detect PID Error                               | + State x 7<br>+Counter x        |                          | a Data Offset                                      |
| CRC-5 Error<br>CRC-16 Error<br>EOP Error<br>Bit Stuffing Error              | Timer 1<br>Timer 2               |                          | h Xxh Xxh Xxh                                      |
| Undo Redo V Pre-Trig                                                        | ger Pass Count 0                 |                          | Advanced Setting >>]       存檔     重設     確定     取消 |

Channel: 选择通道,USB1.1 触发包含 D+, D- 以及 AUX 在内总共使用三个通道。其中 AUX 可选择是否使用。

Speed: 速度模式,支持全速(Full speed)/ 低速(Low speed)。

Triggers: 提供 Enter Suspend / Exit Suspend 以及 CRC-5 / CRC-16 触发。

Error Detect: 提供 PID Error / CRC-5 Error / CRC-16 Error / EOP Error / Bit

Stuffing Error 触发。

Redo / Undo: Redo / Undo 功能可以在用户输入后记录目前的输入信息,提供用

户回复上一步 / 重作下一步的功能。

触发条件设定区: 触发 PID:SETUP; Address = 01h; Endpoint = 0h



| Fields          |             |
|-----------------|-------------|
| PID             | SETUP       |
| Frame<br>Number | XXXh        |
| Address         | = <b>•</b>  |
| Endpoint        | Oh          |
| Data            | Data Offset |
| XXh             | XXh XXh XXh |

| Timestamp    | No. | PID             | Frame Number | Address | Endpoint | CRC 5 | DATA                    | ASCII | CRC16 | Packet Duration |
|--------------|-----|-----------------|--------------|---------|----------|-------|-------------------------|-------|-------|-----------------|
| -0.00591 ms  | 357 | SOF (TOKEN)     | 0288         |         |          | 01    |                         |       |       | 3 us(33 Bits)   |
| -0.002245 ms | 358 | SETUP (TOKEN)   |              | 01      | 00       | 17    |                         |       |       | 3 us(33 Bits)   |
| 0.00142 ms   | 359 | DATAO (DATA)    |              |         |          |       | CO OC 84 00 00 00 01 00 |       | 060E  | 8 us(96 Bits)   |
| 0.010425 ms  | 360 | ACK (HANDSHAKE) |              |         |          |       |                         |       |       | l us(17 Bits)   |
| 1.009085 ms  | 361 | SOF (TOKEN)     | 0289         |         |          | 1E    |                         |       |       | 3 us(33 Bits)   |
| 1.012755 ms  | 362 | OUT (TOKEN)     |              | 01      | 02       | 03    |                         |       |       | 3 us(33 Bits)   |
| 1.01642 ms   | 363 | DATAO (DATA)    |              |         |          |       | 5A OF 66 01             | Z.f.  | EC06  | 6 us(64 Bits)   |
| 1.022755 ms  | 364 | ACK(HANDSHAKE)  |              |         |          |       |                         |       |       | 1 us(17 Bits)   |

### 触发 PID:DATA0; Data: 5Ah, 0Fh, 66h, 01h

| Fields          |             |
|-----------------|-------------|
| PID             | DATA0       |
| Frame<br>Number | XXXh        |
| Address         | = 💌<br>XXh  |
| Endpoint        | Xh          |
| Data            | Data Offset |
| 5Ah             | 0Fh 66h 01h |

| Timestamp     | No. | PID              | Frame Number | Address | Endpoint | CRC5 | DATA                    | ASCII | CRC16 | Packet Duration |
|---------------|-----|------------------|--------------|---------|----------|------|-------------------------|-------|-------|-----------------|
| -45.379 ms    | 1   | SOF (TOKEN)      | 0289         |         |          | 1E   |                         |       |       | 3 us(33 Bits)   |
| -45.375335 ms | 2   | OUT (TOKEN)      |              | 01      | 02       | 03   |                         |       |       | 3 us(33 Bits)   |
| -45.371665 ms | 3   | DATAO (DATA)     |              |         |          |      | 5A OF 66 01             | Z.f.  | EC06  | 5 us(64 Bits)   |
| -45.365335 ms | 4   | ACK (HAND SHAKE) |              |         |          |      |                         |       |       | 2 us(17 Bits)   |
| -45.362915 ms | 5   | SOF (TOKEN)      | 0288         |         |          | 01   |                         |       |       | 3 us(33 Bits)   |
| -45.35925 ms  | 6   | SETUP (TOKEN)    |              | 01      | 00       | 17   |                         |       |       | 3 us(33 Bits)   |
| -45.355585 ms | 7   | DATAO (DATA)     |              |         |          |      | CO OC 84 OO OO OO O1 OO |       | 060E  | 8 us(96 Bits)   |
| -45.346585 ms | 8   | ACK (HAND SHAKE) |              |         |          |      |                         |       |       | 2 us(17 Bits)   |
|               |     |                  |              |         |          |      |                         |       |       |                 |

触发 PID:DATA0; 固定前4个Byte Data: C0h, 0Ch, 84h, 00h



| Fields          |          |      |          |
|-----------------|----------|------|----------|
| PID             | DATA     | 0    | -        |
| Frame<br>Number | XXXh     |      |          |
| Address         | =<br>XXh |      | <b>•</b> |
| Endpoint        | Xh       |      |          |
| Data            |          | Data | Offset   |
| COh             | 0Ch      | 84h  | 00h      |
| 0               | 1        | 2    | 3        |

| Timestamp   | No. | PID              | Frame Number | Address | Endpoint | CRC5 | DATA                    | ASCII | CRC16 | Packet Duration |
|-------------|-----|------------------|--------------|---------|----------|------|-------------------------|-------|-------|-----------------|
| 2.03475 ms  | 369 | SOF (TOKEN)      | 0289         |         |          | 1E   |                         |       |       | 3 us(33 Bits)   |
| 2.038415 ms | 370 | OUT (TOKEN)      |              | 01      | 02       | 03   |                         |       |       | 3 us(33 Bits)   |
| 2.042085 ms | 371 | DATAO (DATA)     |              |         |          |      | 5A OF 66 01             | Z.f.  | EC06  | 5 us(64 Bits)   |
| 2.04842 ms  | 372 | ACK (HAND SHAKE) |              |         |          |      |                         |       |       | 1 us(17 Bits)   |
| 2.050835 ms | 373 | SOF (TOKEN)      | 0288         |         |          | 01   |                         |       |       | 3 us(33 Bits)   |
| 2.054505 ms | 374 | SETUP (TOKEN)    |              | 01      | 00       | 17   |                         | -     |       | 3 us(33 Bits)   |
| 2.05817 ms  | 375 | DATAO (DATA)     |              |         |          |      | CO OC 84 00 00 00 01 00 |       | 060E  | 8 us(96 Bits)   |
| 2.06717 ms  | 376 | ACK (HAND SHAKE) |              |         |          |      |                         |       |       | 1 us(17 Bits)   |

## 其他参数设定说明:

Address Fields 可选择 =, <, >, <=, >=, InRange, Not InRange等不同的条件。