

DSO Software Manual

Index

Applicable Models3
Safety Information4
Chapter 1 Installation6
Installation Procedure7
SDK7
gRPC
Probe Compensation Adjustment9
Chapter 2 Operations 11
Window 11
Waveform Window 12
Basic Browsing Operation13
Measurement Button15
Report Window16
Chapter 3 Toolbar 18
File and Interface Settings18
Display21
Measurement and Analysis23
Waveform Data and Statistics
Digital Voltmeter (DVM)
Math25
FFT

Bus Decode	
Electrical Validation	
Timing Sequence Analysis	
Cursor	50
Acquire	
ADC Bits	
Roll Mode	
Utility	
Calibration Tool	
Logger	
AqVISA	
Chapter 4 Control Panel	
Main Function Button	
Horizontal Axis Settings	57
Sampling Rate	
Record Length	
Trigger Settings	59
Measure Settings	72
Digital Channel Settings	
Channel Settings	73
Display Division Settings	74
Chapter 5 How to Stack Multiple Devices	75
How to Stack Multiple Devices	76

Applicable Models

MSO3000 Series

TS3000 Series

Safety Information

Please read through the safety information before using the device. Make sure you completely understand the rules and follow the instructions below.

MARNING

■ Do not operate without cover(s).

Do not operate the MSO with any cover(s) removed. This may result in electric shock or fire hazard if any part(s) inside is exposed to outer voltage.

About power supply

The MSO is powered by the PC's USB port with DC 5V. Be sure to use the USB cable we provide to connect your MSO device(s) to PC.

Do not operate in wet or damp conditions.

Connect the probe properly

Connect the ground lead of the probe to earth ground only.

Do not connect the ground lead to an elevated voltage.

Do not connect/disconnect probes or test leads while they are probed to a voltage source.

• Observe ALL terminal ratings.

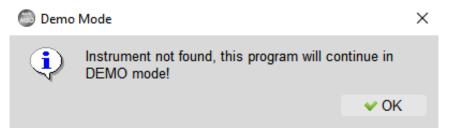
To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product.

■ Do not operate under the following conditions.

- Direct sunlight exposure
- Extremely hot or humid
- Places with frequent mechanical vibrations
- Areas with strong lines of magnetic forces or voltage impulses.
- Remove the USB cable when the MSO is idle.
- It is normal that MSO becomes a bit warmer than usual after being used.

Chapter 1 Installation

Installation Procedure


Hardware Installation

Connect the device to USB port with the USB 3.0 cable. Start the software after the MSO is connected. You may connect to a sample signal source in order to check the hardware functionality.

Software Installation

To install the software, please refer to the official website. Click on **Support** > **Download** > **Software** on the menu above. Follow the instructions on the software to complete to the installation process.

If the following dialog pops up after the software started,

please check whether the instrument is correctly connected, then try to replug the USB cable and restart the software.

SDK

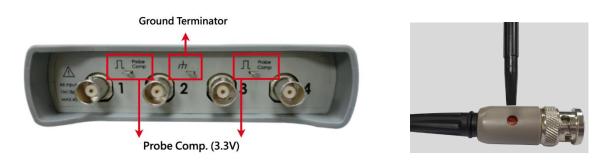
We provide SDK for user to control the software and hardware behavior.

 Software behavior (need to keep the software executing) : User can monitor the software behavior by AqLAVISA Manager. Please check our official GitHub website: https://github.com/acute-technology-inc/aqvisa-grpc. Or find the label: Download→SDK(DLL)→[Logic Analyzer]AqLAVISA SDK, in our official website. Or contact us with e-mail.

AqVISA Manage	r			×
Host				
TCP Server	○ gRPC			Start
IP:	192.168.1.205			
Command				
Template	*IDN?			•
Command	*IDN?			•
	Query			
				Clear
Timestam	ıp	Command	Return	
Command / Retu	rn Data			

 Hardware behavior(DO NOT need to keep the software executing): Please find the label, Download->SDK(DLL)-> [DSO] TS3000/ MSO3000 series SDK ; Or contact us with e-mail. Please note it, there has no any decode processing, only capture data and save.

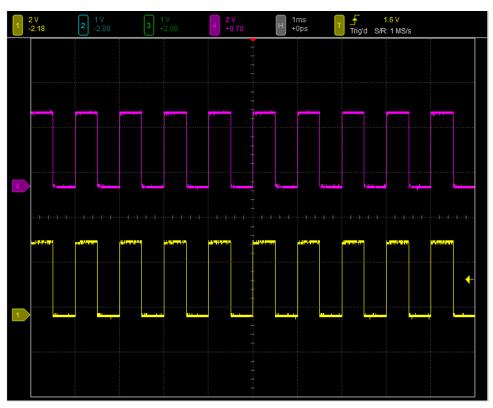
gRPC


We provide gRPC for user to remote control our device. Please check our official GitHub website: <u>https://github.com/acute-technology-inc/aqvisa-grpc</u>. Or search: "aqvisa-grpc". Or contact us with e-mail.

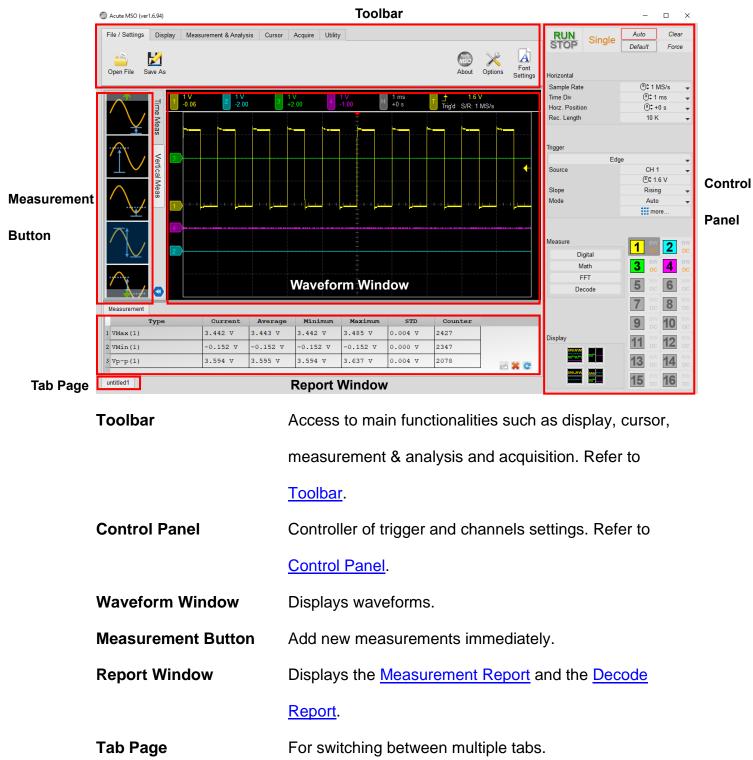
Probe Compensation Adjustment

Please conduct probe compensation adjustment properly before start measuring with the oscilloscope.


- 1. Connect the probes to the BNC connector on MSO and lock it in place.
- 2. Switch the probe attenuation to "x10".
- 3. Attach the probe ground lead to the MSO's ground terminal.
- 4. Attach the probe tip to the "Probe Comp. (3.3V)" signal next to the ground.


5. Run the DSO software. Set the Volt/div = 2v and the Time/div = 1ms. Verify the probe attenuation matches "x10" in the corresponding channel settings. If you see waveforms as below, please slowly turn the screw near the probe's BNC connector (refer to the image above) and adjust the waveforms with flat tops with no overshooting and rounding.

Waveforms before adjustment



Waveforms after adjustment

Chapter 2 Operations Window

Waveform Window

Overview

Channel StatusShows the VOLT/DIV and the status of different channels.Single click on the channel icon to enter the channelsettings dialog. Please refer to Channel Settings.

Horizontal Axis Status Shows the TIME/DIV and the horizontal position.

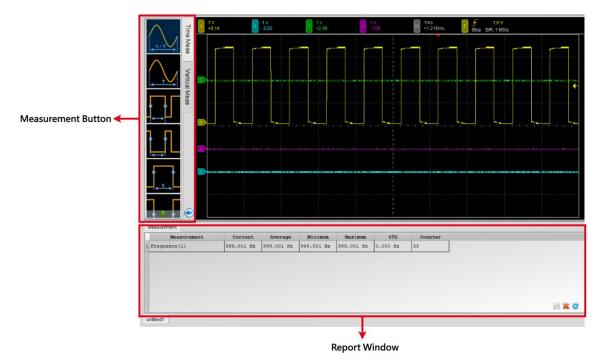
- Trigger Status
 Shows currently chosen trigger mode. Please refer to

 Trigger Settings.
- Trigger PositionThe red arrow sign on the top of the waveform window
indicates the trigger position. You can adjust the trigger
position by dragging the waveform window horizontally.
Click on "To Center" in Horizontal Axis Settings of the
control panel to center align the trigger position.
- Trigger LevelTrigger level is an arrow sign on the right of the waveform
window. It allows you to easily modify the trigger position
by dragging the arrow upwards or downwards. Current
trigger level is also shown in the Trigger Status.
- Channel Tag The channel tags on the left of the waveform window indicates the ground level of each channel. You may drag the channel tag to adjust its position.

Basic Browsing Operation

Mouse Operation

Waveform Dragging	Drag the waveform horizontally with the mouse.			
Zoom In/Out	Scroll the mouse wheel to zoom in/out.			
Volt/Div Adjustment	Move the cursor to the Channel Tag or the Channel			
	Status Icon above the waveform window and scroll the			
	mouse wheel to adjust Volt/Div. They can also be			
	adjusted with Channel Settings.			
Zoom In	Press and hold the right mouse button to select the range			
	of a certain waveform area, click the Zoom in Zone View			
	option in the menu, and a partially enlarged window will			
	pop up, as shown in the figure below.			


Keyboard Shortcuts

The settings can be changed in Option.

Function	Default
Waveform Area Full Screen	F11
<u>Open File</u>	Ctrl + O
Save As	Ctrl + S
Run / Stop	Space

Measurement Button

Double click on the measurement buttons on the left side of the screen to add new measurements immediately. The measurement data is calculated based on currently chosen channel and it will be displayed in the <u>report window</u>.

Report Window

Measurement Table

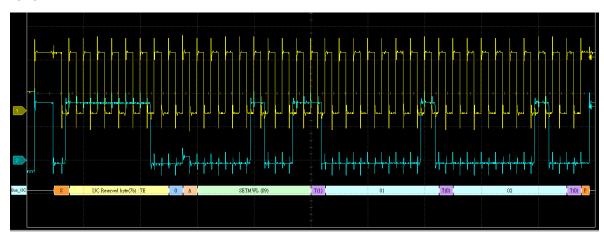
When a new measurement is added, the measurement table will automatically

popup in the report window.

Measurement	Current	Average	Minimum	Maximum	STD	Counter
1 Frequency(1)	1.000 KHz	1.000 KHz	1.000 KHz	1.000 KHz	0.000 Hz	1115
2 Period(1)	1.000 ms	1.000 ms	1.000 ms	1.000 ms	0.032 ns	1099
3 -Width(1)	500.000 us	500.000 us	500.000 us	500.000 us	0.000 ns	995
4 Fall Time(1)	1.079 us	1.068 us	0.000 ns	1.094 us	35.144 ns	962
5 Rise Time(1)	985.263 ns	984.586 ns	971.733 ns	1.012 us	5.631 ns	947
6 +Width(1)	500.000 us	500.000 us	500.000 us	500.000 us	0.014 ns	626

Measurement (Channel) The name of the measurement. Please refer to

	measurement list.
Current	The current measured values.
Average	The arithmetic average value of the measurement since
	measuring began.
Minimum	The minimum value of the measurement since measuring
	began.
Maximum	The maximum value of the measurement since measuring
	began.
STD	The standard deviation value of the measurement since
	measuring began.
Counter	The number of counts since measuring began.


3 buttons on the lower right corner

🛃 Edit	Edit measurement's name and the measured channel.
💢 Clear	Clear statistical data. Click to clear chosen
	measurements or clear all measurements when no
	measurements are selected.
C Reset	Reset the counter of measurements.

Decode Report

When using the bus to decode, an immediate decode data will be displayed as follow.

The decoding data will also be shown in the report area, as shown below is the I3C

decoding data.

	Jus_I3C							
	Timestamp	mestamp S/Sr Address(7b) Command Data(h) Information			Information			
1	5.6035us	s	Wr I3C Resrv. Byte(7	SETMWL(09)	Msb(01)			
2	5.6035us				Lsb(02)	I3C Broadcast CCC Write;		
3	100.628us	s	Wr I3C Resrv. Byte(7	SETMWL(09)	Msb(01)			
4	100.628us				Lsb(02)	I3C Broadcast CCC Write;		
5	195.653us	s	Wr I3C Resrv. Byte(7	SETMWL(09)	Msb(01)			
6	195.653us				Lsb(02)	I3C Broadcast CCC Write;		
7	290.678us	s	Wr I3C Resrv. Byte(7	SETMWL(09)	Msb(01)			

FFT spectrogram

Please refer to <u>FFT</u>.

Chapter 3 Toolbar File and Interface Settings

File / Settings	Displa	y Measure	ment & Analysis	Electrical Validation	Cursor	Acquire	Utility			
Open File	X Save As	Handrei Auto Save						Abou) X options	Font Settings

	Open File	Load .MOW waveform file.
M	Save As	Save current file at a new file location.
	Auto Save	Automatically save waveform or report files every
		specified time interval or after each acquisition.
Acute MSO	About	Shows software version and device serial number.
X	Options	Set environment parameters such working directory,
		shortcut keys.
A	Font settings	Set up the fonts of the software screen.

Open / Save waveform as .MOW file

🔀 Save Waveform	×
Select a file format	
MSO Files (*.MOW)	•
Enter a file name or browse	
C:\Users\sam18\Documents\SettingsOnly.MOW	-
✓ Save settings only (without waveform data)	

Save the current settings and waveform as a .MOW file through "**Save As**". You can also check "Save settings only (without waveform data)" to reduce the storage size. When reloading the .MOW file, click "**Open File**" and select the file to open.

Auto Save

🛃 Auto Save Settings			×
Enable Auto Save			
On Every Trigger			
 By Time Interval 			
Interval:	1 ms	(Range: 100 ms to	100000 s)
Excluding Timeout (Auto) Waveform	n		
Save Directory			
C:\Users\sam18\Documents			
Save Format			
✓ DSO Files (*.MOW)			•
✓ Text Data Files (*.txt)			
 CSV (Comma-seperated Value) 	Data Eilae (* cev)		
 CSV (Comma-seperated Value) 	Report Files (*.CSV)		
 MATLAB Array Data Files (*.m) 			*
✓ Value Change Dump (*.vcd)			•
✓ Open Document Text Report (*.0	dt)		•
✓ HTML Report (*.html)			•
✓ PDF Report (*.pdf)			•
✓ Waveform Images (*.bmp;*.png;	* ing)		
	46.27		
		✓ OK	X Cancel

When Auto Save is enabled, it starts saving waveform data files and report files into designated output directory every specified time interval or after each acquisition.

Each saving format has its own detailed settings. Click on the study button on the right hand side to set up each configuration.

When **Excluding Timeout (Auto) Waveform** is selected, those acquired waveforms that does not meet the trigger requirements will not be saved.

Display

File / Settings	Display	Measurement & Analysis	Electrical Validation	Cursor	Acquire	Utility		
Draw Type II	nterpolation	200					Reference Waveform	1
Line 🗸	Sin(x)/x	OFF 🖕 😋					🚔 R1 R2 R3 R4	

Туре

Display the waveform in **dots** or connected with **lines**.

Interpolation

Draw straight lines (Linear interpolation) between the sample points or connect with smooth curves (Sin(x)/x interpolation).

Persistence Mode

As the screen renew continuously, the older waveform fades out.

Reference Waveform

Load the waveform file as a source of reference in order to compare with the current

waveform.

🔘 Open File for REF	×
File	
C:/Users/sam18/Desktop/Test.MO	w 🔽 🖆
	File Size: 149.8 KB Record Length: 10 K Channel Available: CH 1 CH 2 CH 3 CH 4
Load Settings	
Source Channel	CH 1
Destination REF	REF 1
	🗸 Load File 🛛 🗙 Cancel

The reference waveform is shown in the waveform area as shown in the following

figure.

1 V +1.00	2 1 V -2.00	3 1 V +2.00	4 1 V -1.00	H 400 µs +0 s I.712 V Stop S/R: 2 MS/s
3	······································			
R1)um			juun/	aagua yaa ahaa ahaa ahaa ahaa ahaa ahaa aha
				and the state of the factor of the factor for the state of the factor of
2				

Measurement and Analysis

File / Settings	Display	Measureme	ent & Analysis	Cursor	Acquire	Utility
Measurement	8.88 DVM	X: Math	M. FFT	Bus Decode		

Waveform Data and Statistics

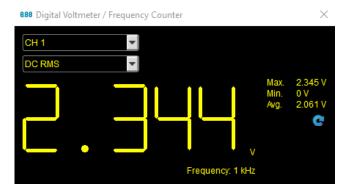
Add Measurement

🚝 Measurement					×
Measurement			Descriptio	on	
Vertical Perio Time VMax Counter VMin VHig VLow Vp-p	c n plitude	•			
Source 1					
Channel 1		•			
Threshold High:	80%	-			
Threshold Low:	20%	•			
			+ Add	✓ ОК	X Cancel

After choosing the measurements, click "**Add**". The added item will be displayed at the report window.

Measurement Items

Item	Description
Frequency	The frequency of the first cycle in the waveform.
Period	The time width required to complete the first cycle in the waveform.
VMax	The most positive peak voltage of the waveform.
VMin	The most negative peak voltage of the waveform.
VHigh	It can be calculated using the histogram method, the most common value found above the mean.



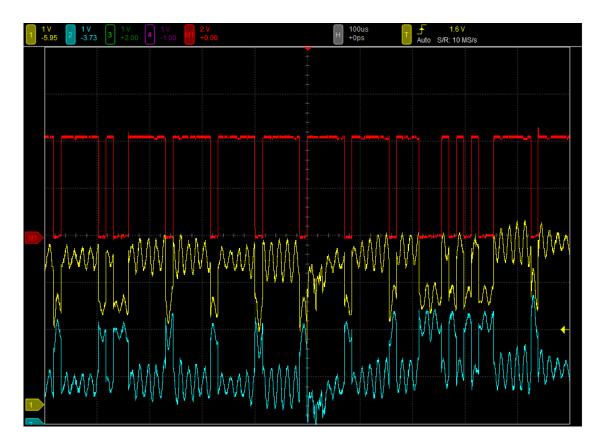
VLow	It can be calculated using the histogram method, the most common value found above the mean.
Vр-р	The peak-to-peak is the difference of Vmax and VMin in the entire waveform.
VAmplitude	The difference of VHigh and VLow in the entire waveform.
VRMS	The root mean square of the voltage over the entire waveform.
VMean	The arithmetic mean over the entire waveform.
VMid	(Vhigh + Vlow) / 2
High Duty	(High duty) / (the width of first period), expressed in percentage.
Low Duty	(Low duty) / (the width of first period), expressed in percentage.
High Period	The ratio of the positive pulse width to the signal period expressed as a percentage. The duty cycle is measured on the first cycle in the waveform.
Low Period	The ratio of the negative pulse width to the signal period expressed as a percentage. The duty cycle is measured on the first cycle in the waveform.
Rise Time	The time for the first rising edge from low reference value (10%) to high reference value (90%).
Fall Time	The time for the first falling edge from high reference value (90%) to low reference value (10%).
Positive Overshoot	((Max. – High) / Amplitude) x 100% in the first rising edge.
Negative Overshoot	((Low – Min.) / Amplitude) x 100% in the first falling edge.
Cycle VRMS	The RMS of the first cycle in the waveform.
Cycle VMean	The arithmetic mean of the first cycle in the waveform.
Delay	The time difference between the rising edge or falling edge of two channels.
Rise Preshoot	((Vmin- Vlow) / (Vhigh- Vlow)) x 100
Fall Preshoot	((VMax- VHigh) / (VHigh- VLow)) x 100.
Phase	Measures the phase difference of two sources by calculating time delay and period.

Edge Count	The total counts for rising/falling edge on the screen.
High Pulse Count	The total counts for complete high pulses on the screen.
Low Pulse Count	The total counts for complete low pulses on the screen.

Digital Voltmeter (DVM)

Provides VRMS, VAvg, and Frequency Counter of chosen channels.

🚼 Math \times Math 1 ON / OFF $\overline{\mathbf{v}}$ Math Description 🛨 Add Subtract − × ÷ Multiple Divide XY XΥ A Absolute √A Square Root LogA lα LnA Settings Source 1 Source 2 Channel 1 Channel 2 Ŧ Ŧ Stretch SCALE POSITION ⊕ ‡1V ■\$ +0.00 Div +0 V -5 5 X Close

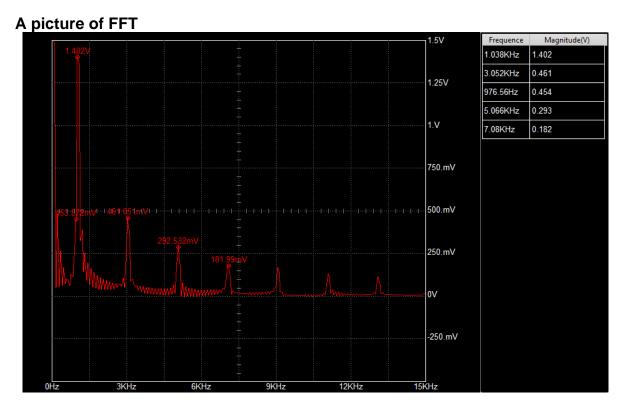

Math operations can be performed on waveforms of any two channels.

Math

Math Operators	$A+B \cdot A-B \cdot A * B \cdot A / B \cdot XY \cdot A \cdot \sqrt{A} \cdot Log(A) \cdot$
	$Ln(A) \cdot e^{A} \cdot \int Adt$.
Source 1	Select the first source waveform.
Source 2	Select the second source waveform.
Scale	Adjust Vertical Div of Math.
Position	Adjust Vertical Offset of Math.

A picture of mathematical operation

FFT


ettings	
Source 1	Vertical
Channel 1	Scale 250.000 mV Reference Level 1.500 V Scale Unit Linear RMS ▼
Window Rectangular	Horizontal Start 0.000 KHz
Max Peak Count: 5	End 500.000 KHz

Does fast Fourier transforms for chosen channels.

Perform fast Fourier transform on the selected channel to determine the component frequency in the signal and display it in the <u>report window</u>.

	end frequency can be set separately.
Horizontal	The input range is 1Hz - 1GHz. The start frequency and
	dBV RMS, dBm RMS.
	Scale Unit: Supports Linear root mean square (RMS) <
	Reference Level: Reference starting point.
	Scale: Units set on vertical graticule.
	1dBuV, 1udBM.
Vertical	Adjust the vertical scale, the smallest input unit is 1uV,
Source	Select a signal source.

*Reference Level and Frequency of the FFT Waveform on the screen can be adjusted with mouse.

Bus Decode

Refer to DSO manual and LA manual.

Electrical Validation

Only for MSO3124V and TS3124V

Di Acute DSO (ver1.8.62)									200	
		nent & Analysis	Electrical Validation	Cursor	Acquire Utility		RUN STOP	Single	Auto Default	Clear Force
Electrical Validation	n le						Horizontal Sample Rate Time Div		8 bits @ 4 Ch, I (10) (10) (10)	MS/s 🚽
Time Meas	1 V +1.00	2 1 V -2.00	3 1V +2.00	4 1V -1.00	H 100 μs +0 s	Auto S/R: 10 MS/s	Horz. Positio Rec. Length	'n	()¢ 10 (€¢ + 10 ks	0 s 👻
Vertical Meas	3						Trigger Source	Edg	e CH 1	
Meas	1			4{	<u></u>		Slope Mode		Risin Auto	*
	ուրարորուրո						Di	gital lath	1 m 3 m	2 bv bc 4 bv bc
, <u>, t</u>	2					• • • • • • • • • • • • • • • • • • •		FT code	5 bc 7 bc	6 8W 8 8W 00
							Display	w#	9 pc 11 pc 13 pc	10 DC 12 DC 14 DC
untitled1				:					15 bo	16 bc
I2C I2S MIPI I3C MIPI RFFE MIPI SPMI	Settings General XDecode Validation	Channel Set	tings DSO Channel 1 💌	Probe Setting	gs: x10 -				Import	Export
PDM SPI UART(RS232)		Working V	DSO Channel 2 oltage(V _{DD}): 3.30 V	Probe Setting	ıgs: x10 ▼	x10 →				
		Fast MFast MHigh S	rrd Mode (Max: 100Kl lode (Max: 400Kbit/s) lode + (Max: 1Mbit/s peed Mode (Max: 3.4 nized Speed 100 Kt) Mbit/s) Cb '	Value= 100pf (Ma	x.) *				
	Default									Next
	Deiduit									INCAL

For more information, please check the Electrical Validation manual, or go to our official website->Solution->Electrical Validation.

Timing Sequence Analysis Acute DSO (ver1.8.0 × File / Settings Display Measurement & Analysis Electrical Validation Cursor Acquire Utility RUN STOP Auto Clear Single Default Force -1-×÷ 8.88 ML Bus ning Seque Analysis FFT DVM Math Decode Measurement ts @ 4 Ch, Max 250 MS/s) Horizontal Sample Rate (10 MS/s Time Div (=): 100 µs 100 µs +0 s 1 V -2.00 1 V +2.00 1.6 V Auto S/R: 10 MS/s +1.00 Horz. Position (≣‡+0 s Time Rec. Length 10 kS Meas Trigger Vertica Edge CH 1 Source €‡ 1.6 V Slope Rising Mode Auto more Measur 1 2 Digital 4 Math 3 FFT 5 6 Decode 7 8 10 Display 12 w= 13 14 <u>.</u> 15 16 untitled1

This function can import a CSV file containing the parameters and measurement

items. The logic analyzer will adjust the parameters, channel names and

measurement types according to the settings in this file.

The CSV file compilation rules need to be based on the field names at the beginning, then separate the values in different fields with a comma. and it need to end with a semicolon (;).

The text after the double slash (//) will be regarded as a comment and ignored.

(For sample files, Please contact us.)

Feature Select

The LA software will ask user which function that user want to apply while reading the configure file. Set the trigger condition according to the configure file, and hide

the channels which are not in use.

Feature select		×
 Use Timing Check features Use H/W Strap features 		
	ОК	Cancel

Column Items:

• [SampleRate]

Only accept single line input.

Input the sample rate value, Units: MHz, KHz, Hz.

The maximum sampling rate range that can be used will be affected by the number of channels and trigger types, and the minimum sampling rate cannot be lower than 100KHz.

This item will affect both Analog and Digital Sample Rate settings, use

[AnalogSampleRate] and [DigitalSampleRate] items to change the Sample

Rate settings separately.

Example	[SampleRate] 200MHz
	•

• [AnalogSampleRate]

Only accept single line input. ONLY for MSO series.

Input the analog sample rate value, Units: MHz, KHz, Hz.

The maximum analog sampling rate range that can be used will be affected by

the number of channels and trigger types, and the minimum sampling rate

cannot be lower than 100KHz.

• [DigitalSampleRate]

Only accept single line input.

Input the digital sample rate value, Units: MHz, KHz, Hz.

The maximum digital sampling rate range that can be used will be affected by

the number of channels and trigger types, and the minimum sampling rate

cannot be lower than 100KHz.

Example	[DigitalSampleRate] 25MHz
	5

[RecordLength]

Only accept single line input.

Input the recording memory. Unit: MB, Mb.

The maximum of the recording memory depends on the different models. The

minimum recording memory value be lower than 16Mb.

Example	[RecordLength] 100Mb
	•
	,

• [TransitionMode]

Only accept single line input.

Transitional Mode setup. Unit: None.

For Acute MSO series, Transitional storage mode is not available when

analog channel is on.

Example	[TransitionalMode] 1 //Transitional storage mode ON
	• •

• [Threshold]

Available to input multiple line for adjust different threshold for the

channels. Enter the threshold level in each row, Unit: mV, V.

For different model, it has different range of threshold level.

MSO series threshold voltage range : ±20V

*For TL series, when the Schmitt circuit function is enabled, Channel 16-31

will turn into the secondary Ref. threshold voltage. Acute MSO series are

unaffected.

Example	[Threshold] 1.6V //Ch 00-07 1.5V //Ch 08-15 1.2V //Ch 16-23 or the secondary of input for Ch00-07 2.5V //Channel 24-31 or the secondary of input for Ch08- 15 :
---------	---

Available to input multiple line for adjust different threshold for the

channels. Enter the threshold level in each row, Unit: mV, V.

For different model, it has different range of threshold level.

MSO series threshold voltage range : ±20V

*For TL series, when the Schmitt circuit function is enabled, Channel 16-31

will turn into the secondary Ref. threshold voltage. Acute MSO series are

unaffected.

Example	[Threshold] 1.6V //Ch 00-07 1.5V //Ch 08-15 1.2V //Ch 16-23 or the secondary of input for Ch00-07 2.5V //Channel 24-31 or the secondary of input for Ch08- 15 ;
---------	---

• [UseSchmittCircuit]

Only accept single line input.

Enter whether to enable the hardware Schmitt circuit hysteresis function to

reduce the received digital signal noise, and the number of available channels

will not be affected.

Example	[UseSchmittCircuit] 1 //Input 1 to enable Schmitt circuit

[Hysteresis]

Only accept single line input.

Enter whether to enable the hardware Schmitt circuit hysteresis function to

reduce the received digital signal noise.

Example [Hysteresis] 1 //Input 1 to enable extra Hysteresis feature.	
---	--

• [Channel]

Available to enter multiple lines of settings to add different channels, each

line is entered in sequence:

- 1. Select Channel. CH0 -> Digital CH0, CH(A)0 -> Analog CH0
- 2. Label for Channel. It is available to enter less than 31 alphabets or numbers.
- (Option)Select TimingCheck or HwStrap (TimingCheck+HwStrap means enable both)
- (Option)Enter the expect maximum voltage for auto calculate the voltage division for analog channel.
- 5. (Option) Enter the expect minimum voltage for auto calculate the voltage division for analog channel.

The available channels will vary according to different models and the

selected sampling rate.

	[Channel] CH20, MyData0, HwStrap CH22, MyData1, TimingCheck CH24, MyData2, TimingCheck+HwStrap
--	---

// (Analog Channel settings. ONLY for MSO series) CH(A)1, VCC (1.8V) //Analog CH1, Using the default voltage
division and offset
CH(A)2, VDD (1.5V) //Analog CH2, Using the default voltage
division and offset
CH(A)3, AAA, TimingCheck, 1.5V // Analog CH3, Set up the max
voltage division
CH(A)4, BBB,, 1.0V // Analog CH4, Set up the max voltage division
CH(A)5, CCC,, 2.0V, 1.0V // Analog CH5, Set up the max & min
voltage division

Check Mode	Description
HwStrap	CH is only for H/W Strap. It will be hidden while in Timing Check.
TimingCheck	CH is only for Timing Check. It will be hidden while in H/W Strap.
TimingCheck+HwStrap	For both mode.

• [AnalogChannel]

Available to enter multiple lines of settings to add different channels, each

line is entered in sequence:

- Select Channel. For MSO3K series, input DSO CH1 to select Analog CH1; For MSO2K series, input CH(A)0 to select Analog CH0
- 2. Label for Channel. It is available to enter less than 31 alphabets or numbers.
- Enter the voltage division setting. For MSO3K series, the input will effect both display and acquisition settings; For MSO2K series, the input will only effect display settings.
- Enter the voltage offset setting. For MSO3K series, the input will effect both display and acquisition settings; For MSO2K series, the input will only effect display settings.
- (Option) Enter the probe attenuation setting, ONLY for MSO3K series, MSO2K series will ignore this setting.
- 6. (Option) Enter the bandwidth limitation setting, 20MHz, 100MHz or FULL,

ONLY for MSO3K series, MSO2K series will ignore this setting.

7. (Option) Enter the channel coupling setting, DC or AC, ONLY for MSO3K

series, MSO2K series will ignore this setting.

The available channels will vary according to different models and the

selected sampling rate.

Example	[AnalogChannel] //MSO3K settings sample DSO CH1, MyVolt1, 1V, 1.0, 10, FULL, DC //Analog CH1, display name is MyVolt1, voltage division 1V, voltage offset +1.0 division, x10 probe attenuation, FULL bandwidth, DC coupling DSO CH4, MyVolt2, 500mV, -3.0, 1, 20MHz, AC //Analog CH4, display name is MyVolt2, voltage division 500mV, voltage offset - 3.0 division, x1 probe attenuation, bandwidth limited to 20MHz, AC coupling
	[AnalogChannel] //MSO2K settings sample CH(A)3, MyVolt5, 1V, 1.0 //Analog CH3, display name is MyVolt5, voltage division 1V, voltage offset +1.0 division;

• [Trigger]

Only accept single line input. Enter in order:

1. Trigger Channel Label: Reference to the Label in [Channel] settings for

trigger settings.

2. Trigger Type:

Trigger Type
CHANNEL_LOW
CHANNEL_HIGH
CHANNEL_ANY
CHANNEL_RISING
CHANNEL_FALLING
CHANNEL_CHANGING
ANALOG_CH_RISING (ONLY for MSO
series)
ANALOG_CH_FALLING (ONLY for MSO
series)

- 3. (Optional)Select TimingCheck or HwStrap (TimingCheck+HwStrap for both)
- 4. (Optional)Analog Trigger Voltage, Unit: mV 、V. (Only when selecting analog

CH in MSO series.

Example	[Trigger] // For H/W Strap, selecting MyData1 (Triggered when Ch22 Rise) MyData1, CHANNEL_RISING, HwStrap //For Timing Check, selecting MyData2 (Triggered when Ch24 Rise) MyData2, CHANNEL_RISING, TimingCheck ;
	[Trigger] //Analog Trigger (Only for MSO series) //For Example: Timing Check VCC (1.8V) (Triggered when Analog Ch1 rising equal or more than 1.5V) VCC (1.8V), ANALOG_CH_RISING, TimingCheck, 1.5V ;

• [TriggerPosition]

Only accept single line input.

Entering the trigger position in percentage. Input Range: 1% to 99%

Example	[TriggerPosition] 20% //Set the trigger position to 20%
	•

• [RangeStart]

Only accept single line input.

Set measurement start position, available input from CursorA to CursorZ.

[RangeStart] CursorS //Set measurement starts from Cursor S
• •

• [RangeEnd]

Only accept single line input.

Set measurement end position, available input from CursorA to CursorZ.

[RangeStart] Example CursorE //Set measurement ends at Cursor E	
	,

[TimingCheck]

Available to enter multiple lines of settings to add different settings, Enter

in order:

- 1. Timing Check Spec, Only for display.
- 2. Timing Check Description, Only for display.
- 3. Target CH A: Need reference [Channel] label name.
- 4. Target CH B: Need reference [Channel] label name.
- 5. Timing Check Type, items marked in orange are for MSO series only.

Item -	Remark
CHA_RISE_TO_CHB_RISE	Time difference from:←
	First CH A Rising Edge TO↩
	First CH B Rising Edge.∉
	сна
	снв
CHA_RISE_TO_CHB_FALL	Time difference from:↩
	First CH A Rising Edge TO↩
	First CH B Falling Edge.↩
	СНА
	снв
CHA_FALL_TO_CHB_RISE	Time difference from:∉
	First CH A Falling Edge TO↩
	First CH B Rising Edge.∉
	СНА
	снв

CHA_FALL_TO_CHB_FALL	Time difference from:↔
	First CH A Falling Edge TO
	First CH B Falling Edge.∉
	СНА
	снв
CHA_RISE_TO_NEXT_CHB_RISE	Time difference from:↔
	First CH A Rising Edge TO
	Next CH B Rising Edge.↩
	сна
	СНВ
CHA_RISE_TO_NEXT_CHB_FALL	Time difference from:↔
	First CH A Rising Edge TO
	Next CH B Falling Edge.∉
	сна
	снв

CHA_FALL_TO_NEXT_CHB_RISE@	Time difference from:←
	First CH A Falling Edge TO↩
	Next CH B Rising Edge.↩
	сна
	снв
CHA_FALL_TO_NEXT_CHB_FALL@	Time difference from:←
	First CH A Falling Edge TO↩
	Next CH B Falling Edge.↩
	сна
	снв
CHA_RISE_TO_PREV_CHB_RISE∉	Time difference from:←
	First CH A Rising Edge TO↩
	Previous CH B Rising Edge.↩
	СНА
	снв

 CHA_RISE_TO_PREV_CHB_FALL∉	Time difference from:←
	First CH A Rising Edge TO↩
	Previous CH B Falling Edge.∉
	сна
	снв
CHA_FALL_TO_PREV_CHB_RISE@	Time difference from:←
	First CH A Falling Edge TO↩
	Previous CH B Rising Edge.↩
	сна
	снв
CHA_FALL_TO_PREV_CHB_FALL	Time difference from:←
	First CH A Falling Edge TO⊖
	Previous CH B Falling Edge.↩
	СНА
	снв

 CHA_RISE_TO_FAREST_CHB_RISE∉	Time difference from:↩
	First CH A Rising Edge TO↩
	Farthest CH B Rising Edge.∉
	сна
	снв
CHA_RISE_TO_	Time difference from:←
FAREST_CHB_FALL	First CH A Falling Edge TO↩
	Farthest CH B Rising Edge.∉
	сна
	снв
CHA_FALL_TO_	Time difference from:↩
FAREST_CHB_RISE₫	First CH A Falling Edge TO↩
	Farthest CH B Rising Edge.∉
	сна
	снв

CHA_FALL_TO_	Time difference from:↩
FAREST_CHB_FALL∉	First CH A Falling Edge TO⊌
	Farthest CH B Falling Edge.⊌
	сна
	СНВ СНВ СНВ СНВ СНВ СНВ СНВ СЛ
CHA_HIGH_TIME⊴	ج <i>ے</i>
CHA_LOW_TIME↩	<i>ب</i>
CHA_HIGH_PULSE_COUNT	ج ج
CHA_LOW_PULSE_COUNT@	ب ب
CHA_RISE_EDGE_COUNT∉	ب
CHA_FALL_EDGE_COUNT∉	<i>ب</i>
CHA_EDGE_COUNT∉	<i>ф</i>
CHA_SLEW_RATE ^{*1} €	Ą
CHA_V_MAX⊴	ę
CHA_V_MIN₽	<i>ф</i>
CHA_V_PP	ę
CHA_V_HIGH <i>e</i>	<i>₽</i>
CHA_V_LOW₽	<i>₽</i>
CHA_V_AMPLITUDE	ę
CHA_V_MEAN₽	ę
CHA_RISE_TIME∉	ę
CHA_FALL_TIME	<i>ب</i>

6. Min. Limit:

- I. For Timing Measurement, Unit: ns, us, ms, s.
- II. For Voltage Measurement, Unit: mV, V.
- III. For SLEW_RATE, available units: mV/us, mV/ms, V/us, V/ms.

mV/us or V/us will be the default units.

Input X stands for don't care.

- 7. Max. Limit:
 - I. For Timing Measurement, Unit: ns, us, ms, s.
 - II. For Voltage Measurement, Unit: mV, V.
 - III. For SLEW_RATE, available units: mV/us, mV/ms, V/us, V/ms. mV/us or V/us will be the default units.

Input X stands for don't care.

- 8. (Option)CH A Ref. Voltage: (MSO Series Only)
 - I. The percentage of the amplitude.Ex: Entered "90%" for the position of amplitude;
 - II. The voltage value for reference pointEx: Entered "1.25V" for the 1.25V position.
- 9. (Option) CH B Ref. Voltage: (MSO Series Only)
 - I. The percentage of the amplitude.Ex: Entered "90%" for the position of amplitude;
 - II. The voltage value for reference pointEx: Entered "1.25V" for the 1.25V position.
- 10. (Option) CHA pass counts: Available to ignore N times when the condition matches. (MSO Series Only)
- 11. (Option) CHB pass counts: Available to ignore N times when the condition matches. (MSO Series Only)

*1: Slew Rate will decide whether it is rise or fall edge by Ref. voltage.

	[TimingCheck] Spec_00, Desc_00, MyData0, MyData1, CHA_RISE_TO_CHB_RISE, 1ns, 10ms Spec_01, Desc_01, MyData1, MyData2, CHA_FALL_TO_CHB_RISE, X, 100ms Spec_02, Desc_02, MyData2, MyData3, CHA_FALL_TO_CHB_FALL, 100us, X ; [TimingCheck] //Analog Channel (MSO series ONLY)
Example	Spec_00, Desc_00, VDD (1.5V), VCC (1.8V),CHA_RISE_TO_CHB_RISE,10ms,20ms,90%,90%,0,0
	Spec_01, Desc_01, VDD (1.5V), VCC
	(1.8V),CHA_RISE_TO_CHB_RISE,1ms,5ms,80%,80%,0,0
	Spec_02, Desc_02, CH0 (3.3V), CH0 (3.3V), CHA_SLEW_RATE, 20mV/ms, 50mV/us //Rising
	Spec_03, Desc_03, CH0 (3.3V), CH0 (3.3V), CHA_SLEW_RATE, 50mV/ms, 20mV/us //Falling
	Spec_04, Desc_04, CH0 (3.3V), , CHA_V_HIGH, 500mV, 600mV //V High
	Spec_05, Desc_05, CH0 (3.3V), , CHA_RISE_TIME, 50ms, 100ms //Rise Time

Timing Check Report Area

Test Overview	Spec. Overview	Test De	etail											
Timing Spec.	Descriptio	'n	Label Name A	Label Name B	Туре	Min. Limit	Max. Limit	Value	Pass/Fail	Label A Rule	Label B Rule	abel A Pass Cour	abel B Pass Cour	laveform Ind
tCPU00			VccDSW3.3V	CPU_C10_GATE#	CH A Rise to CH B Rise	1 ms	100 ms	-107.087 ms	Fail	-			-	1
tCPU01			CPU_C10_GATE#	RSMRST#	CH A Rise to CH B Rise	1 ms		106.975 ms	Pass	-				1
tCPU03			RSMRST#	DDR_VTT_CNTL	CH A Rise to CH B Rise		25 ms	111.444 µs	Pass	-				1
tCPU04			DDR_VTT_CNTL	DSW_PWROK	CH A Rise to CH B Rise	0 s	-1 ns							1
tCPU12			DSW_PWROK	IMVP VR_ON	CH A Rise to CH B Rise	1 ms						77.5		1
tCPU16			IMVP VR_ON	PCH_PWROK	CH A Rise to CH B Rise	0 s		1.393 ms	Pass	-				1
tCPU22			PCH_PWROK	PLTRST_N	CH A Fall to CH B Fall	1 µs		154.508 µs	Pass	-		-		1
tCPU26			PLTRST_N	VccDSW3.3V	CH A Rise to CH B Rise		65 µs	32.900 µs	Pass	-				1
tCPU28b			VccDSW3.3V	RSMRST#	CH A Fall to CH B Fall	0 s		109.830 µs	Pass		875		***	1
tCPU30			CPU_C10_GATE#	DDR_VTT_CNTL	CH A Rise to CH B Rise	10 µs	65 µs	107.086 ms	Fail					1
tPCH01			RSMRST#	DSW_PWROK	CH A Rise to CH B Rise	9 ms								1
tPCH02			DDR_VTT_CNTL	IMVP VR_ON	CH A Rise to CH B Rise	30 ms		92.088 ms	Pass					1
tPCH03			DSW_PWROK	PCH_PWROK	CH A Rise to CH B Rise	1 µs							***	1
tPCH04			IMVP VR_ON	PLTRST_N	CH A Rise to CH B Rise	9 ms		-92.120 ms	Fail	_				1
tPCH05			PCH_PWROK	VccDSW3.3V	CH A Rise to CH B Rise	1 µs		-93.480 ms	Fail					1
tPCH06			PLTRST_N	CPU_C10_GATE#	CH A Rise to CH B Rise	200 µs		-107.054 ms	Fail					1

While the waveform finished capture, the software will do the result(Pass/Fail)

analysis and display it.

Double click the report data for positioning the CHA & the CHB referenced location in

waveform area.

Timing sequence: Measuring power-on(off) sequence.

-3.00	2 1 V -2.80	3 1V -2.60		2.40 5 1V		5 1 V -2.00	7 11	80	1 V -1.60	н	200 ms +0 s	5 1.6 V	
						1						Coup Serie The	
						1 the sector							
						Adaptation							
				Late		The state							
						and I amount of							
						-							
	-					1							
Test Overview Sp	ec. Overview Test	Detail											
								L Transala	A CONTRACTOR OF		In the second second	n abel 8 Pass Cour	
Timing Spec.	Description	Label Name A	Label Name B	Туре	Min. Limit	Max Limit	Value	Pass/Fail	Label A Rule	Label B Rule	abel A Pass Cour	abel 8 Pass Cour	n /aveform Inde
tCPU00	Description	VccDSW3.3V	CPU_C10_GATE#	CH A Rise to CH B Rise	1 ms	Max Limit 100 ms	-107.087 ms	Fail	Label A Rule	Label B Rule	abel A Pass Cour	n abel 8 Pass Cour	n /aveform Inde
tCPU00	Description	VccDSW3 3V CPU_C10_GATE#		CH A Rise to CH B Rise CH A Rise to CH B Rise	and the second se				Label A Rule	Label B Rule	abel A Pass Cour	- Abel 8 Pass Cour	n /aveform Inde 1 1
tCPU00 tCPU01 tCPU03	Description	VccDSW3.3V	CPU_C10_GATE#	CH A Rise to CH B Rise	1 ms		-107.087 ms	Fail	Label A Rule	Label B Rule	abel A Pass Cour		1 1 1
tCPU00	Description	VccDSW3 3V CPU_C10_GATE#	CPU_C10_GATE# RSMRST#	CH A Rise to CH B Rise CH A Rise to CH B Rise	1 ms	100 ms	-107.087 ms 106.975 ms	Fall Pass	Label A Rule	Label B Rule	abel A Pass Cour		1 1 1 1
CPU00 CPU01 CPU03	Description	VccDSW3.3V CPU_C10_GATE# RSMRST#	CPU_C10_GATE# RSMRST# DDR_VTT_CNTL	CH A Rise to CH B Rise CH A Rise to CH B Rise CH A Rise to CH B Rise	1 ms 1 ms	100 ms 25 ms	-107.087 ms 106.975 ms	Fall Pass	Label A Rule	Label 8 Rule	abel A Pass Cour		1 1 1 1 1 1
CPU00 CPU01 CPU03 CPU04 CPU04	Description	VccDSW3 3V CPU_C10_GATE# RSMRST# DDR_VTT_CNTL	CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_PWROK	CH A Rise to CH B Rise CH A Rise to CH B Rise CH A Rise to CH B Rise CH A Rise to CH B Rise	1 ms 1 ms 0 s	100 ms 25 ms	-107.087 ms 106.975 ms	Fall Pass	Label A Rule	Label B Rule	abel A Pass Cour		n /aveform inde 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CPU00 CPU01 CPU03 CPU04 CPU04 CPU12 CPU16	Description	VecDSW3.3V CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_PWROK	CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_PWROK IMVP VR_ON	CH A Rise to CH B Rise CH A Rise to CH B Rise	1 ms 1 ms 	100 ms 25 ms	-107.087 ms 106.975 ms 111.444 µs	Pail Pass Pass	Label A Rule	Label B Rule	abel A Pass Cour	- abel 8 Pass Cour	n/aveform inda 1 1 1 1 1 1 1 1 1 1
CPU00 CPU01 CPU03 CPU04 CPU04 CPU12 CPU16 CPU22	Description	VccDSW3.3V CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_PWROK MVP VR_ON	CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_PWROK MVP VR_ON PCH_PWROK	CH A Rise to CH B Rise CH A Rise to CH B Rise	1 ms 1 ms 	100 ms 25 ms	-107.087 ms 106.975 ms 111.444 µs 	Fail Pass Pass Pass Pass	Label A Rule	Label B Rule	abel A Pass Cour	- abel 8 Asis Cour 	n/aveform inde 1 1 1 1 1 1 1 1 1 1 1 1 1
CPU00 CPU01 CPU03 CPU04 CPU12 CPU16 CPU22 CPU26	Description	VccDSW3.3V CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_PWROK MVP VR_ON PCH_PWROK	CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_PWROK IMVP VR_ON PCH_PWROK PLTRST_N	CH A Rise to CH B Rise CH A Fiel to CH B Fail	1 ms 1 ms 	100 ms 25 ms 1 ns 	-107.087 ms 106.975 ms 111.444 μs 1.393 ms 154.508 μs	Fail Pass Pass Pass Pass Pass	Label A Rule	Label B Rule	abel A Pass Cour	- abel 8 Pass Cour 	n /aveform inde 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CPU00 CPU01 CPU03 CPU03 CPU04 CPU05	Description	VccDSW3.3V CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_PWROK IMVP VR_ON PCH_PWROK PLTRST_N	CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_PWROK IMVP VR_ON PCH_PWROK PLTRST_N VecDSW3 3V	CH A Rise to CH B Rise CH A Fiel to CH B Fail CH A Fiel to CH B Rise	1 ms 1 ms 0 s 1 ms 0 s 1 μs 	100 ms 25 ms 1 ns 	-107 087 ms 106 975 ms 111 444 μs 	Fail Pass Pass Pass Pass Pass Pass	Label A Rule	Label B Rule	abel A Pass Cour	- abel 8 Pass Cour 	Naveform inde 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ICPU00 ICPU01 ICPU03 ICPU03 ICPU04 ICPU04 ICPU12 ICPU15 ICPU22 ICPU25 ICPU28 ICPU28 ICPU204 ICPU28 ICPU205 ICPU205	Description	VccDSW3.3V CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_PWROK IMVP VR_ON PCH_PWROK PLTRST_N VccDSW3.3V	CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_VPVROK MVP VR_ON PCH_PWROK PLTRST_N VccDSW3.3V RSMRST#	CH ARise to CH B Rise CH AFall to CH B Fall CH ARise to CH B Rise CH AFall to CH B Fall	1 ms 1 ms 0 s 1 ms 0 s 1 μs 0 s	100 ms 25 ms -1 ns 65 µs 	-107 087 ms 106.975 ms 111.444 μs 	Pass Pass Pass Pass Pass Pass Pass Pass Pass	Label A Rule	Label B Rule	abel A Pass Cour	- abel 4 Pass Cour 	/ aveform inde 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ICPU00 ICPU01 ICPU03 ICPU03 ICPU04 ICPU04 ICPU05 ICPU05 ICPU06 ICPU06 ICPU26 ICPU286	Description	VecDSW3 3V CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_PWROK IMVP VR_ON PCH_PWROK PLTRST_N VecDSW3 3V CPU_C10_GATE#	CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_PWROK MVP VR_ON PCH_PWROK PLTRST_N VccDSW3 3V RSMRST# DDR_VTT_CNTL	CH A Rise to CH B Rise CH A Fail to CH B Fail CH A Fail to CH B Fail CH A Rise to CH B Rise	1 ms 1 ms 0 s 1 ms 0 s 1 μs 0 s 1 μs 0 s	100 ms 25 ms -1 ns 65 µs 	-107 087 ms 106.975 ms 111.444 μs 	Pass Pass Pass Pass Pass Pass Pass Pass Pass	Label A Rule	Label B Rule	abel A Pass Cour	- abel 9 Ass Cour 	/ Aveform inde
KCPU00 KCPU01 KCPU03 KCPU04 KCPU04 KCPU04 KCPU04 KCPU04 KCPU12 KCPU14 KCPU15 KCPU26 KCPU28 KCPU30 IPCH01	Description	VecDSW3 3V CPU_C10_GATE# RSMRST# DDR_VTT_CMTL DSW_PWROK IMVP VR_ON PCL_PWROK PLTRST_N VecDSW3 3V CPU_C10_GATE# RSMRST#	CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_PWROK MVP VR_ON PCH_PWROK PLTRST_N VccDSW3.3V RSMRST# DDR_VTT_CNTL DSW_PWROK	CH A Rise to CH B Rise CH A Rise to CH B Rise	1 ms 1 ms 0 s 1 ms 0 s 1 ms 0 s 1 ms 0 s 1 μs 0 s 1 μs 0 s 9 ms	100 ms 25 ms -1 ns 65 µs 	-107 087 ms 106.975 ms 111.444 μs 	Fail Pass Pass Pass Pass Pass Pass Pass Pas	Label A Rule	Label 8 Rule	abel A Pass Cour 	abel a Pass Cour	/ Avveform Index 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CPU00 CPU01 CPU03 CPU03 CPU04 CPU04 CPU12 CPU16 CPU22 CPU28 CPU28 CPU28 CPU30 PCH01 PCH02 PCH03	Description	VccDSW3 3V CPU_C10_GATE# RSMRST# DDR_VTT_CMTL DSW_PWROK IMVP VR_ON PCH_PWROK PCH_PWROK VccDSW3 3V CPU_C10_GATE# RSMRST# DDR_VTT_CMTL	CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_PWROK MVP VR_ON PCH_PWROK PLTRST_N VccDSW33V RSMRST# DDR_VTT_CNTL DSW_PWROK MVP VR_ON	CH A Rise to CH B Rise CH A Rise to CH B Rise	1 ms 1 ms 0 s 1 ms 0 s 1 ms 0 s 1 ms 0 s 1 μs 0 s 10 μs 9 ms 30 ms	100 ms 25 ms -1 ns 65 µs 	-107 087 ms 106.975 ms 111.444 μs 	Fail Pass Pass Pass Pass Pass Pass Pass Pas	Label A Rule	Label 8 Rule	abel A Pass Cour	aded yeas Cour 	/ aveform indefinition indefinitio indefinition indefinit
CPU00 CPU01 CPU03 CPU03 CPU04 CPU12 CPU12 CPU12 CPU22 CPU28 CPU28 CPU28 CPU30 PCH01 PCH02	Description	VecDSW3 3V CPU_C10_GATE# RSMRST# DOR_VT_CNTL DSW_PWROK DSW_PWROK PUTST_N VecDSW3 3V CPU_C10_GATE# RSMRST# DOR_VT_CNTL DSW_PWROK	CPU_C10_GATE# RSMRST# DDR_VTT_CNTL DSW_PWROK DSW_PWROK PCH_PWROK PLTRST_N VccDSW33V RSMRST# DDR_VTT_CNTL DDR_VTCNTL DSW_PWROK MVP VR_ON PCH_PWROK	CHA Rise to CH B Rise CHA Fail to CH B Fail CHA Fail to CH B Fail CHA Fail to CH B Fail CHA Rise to CH B Rise CHA Rise to CH B Rise CHA Rise to CH B Rise CHA Rise to CH B Rise	1 ms 1 ms 0 s 1 ms 0 s 1 ms 0 s 1 μs 30 ms 1 μs	100 ms 25 ms -1 ns 65 µs 	-107.087 ms 106.975 ms 111.444 µs 1.393 ms 154.508 µs 32.900 µs 109.830 µs 107.086 ms 92.088 ms 	Fail Pass Pass	Label A Rule	Label 8 Rule	abel A Pass Cour	aded 9 years Court 	/ aveform indeform indeform indeform indeforming indeformed in the indeformation indeformed in the indeformation in the indeformation i

Generating Power Sequence html format report

The power sequence report provides with waveform screenshots and testing results,

and it is available to edit the report title and user-defined information. It also allows

user to adjust the p	icture time range for each test items.		
Save Power Sequence			×
C:\Users\User\Docume Save Settings	ents/Acute/MS3K//Power_Sequence_Report		Browse
Save Html as: Set User Logo Save Range	As combined html file		Browse
All Acquisition Wa Select Acquisition	veform I Waveform (ex: 1,3,4~7,8):		
Additional User Info			
Advance		ОК	Cancel

1. Save Html as:

- ١. As uncombined html file: All the waveform screenshots would be saved as .jpg respectively.
- As combined html file: All the waveform screenshots would be II. embedded in html report.
- 2. Set User Logo: User can set the logo for html report, like company logo.

- 3. Save Range:
 - I. All Acquisition waveform: Saved all the acquisition result.
 - II. Select Acquisition waveform: User can choose certain acquisition results to saved.
- 4. Additional User Info: User can set the additional text for html report, like date and testing target.
- 5. Advanced Setting:

	Name	Magnification	Settings
1	tCPU00	1	tCPU00
2	tCPU01	1	
3	tCPU03	1	Magnification of Image
4	tCPU04	1	x1 🌲
5	tCPU12	1	
6	tCPU16	1	
7	tCPU22	1	Apply

Users can set the size of the screenshot for a particular test.

Power Sequence Report

Test Instrument Model	MSO3124V
Test Instruments Serial Number	MSV31240021
Test Date	2024-06-28 16:14:57.580
S/W Version	1.8.0
Reference File Name	
Waveform Index	1

Overview Results:

Total:	16
Pass:	8
Fail:	8

Select Display:

All 🗸

Index	Timing Spec.	Description	Label Name A	Label Name B	Туре	Min. Limit	Max. Limit	Value	Pass/Fail
1	tCPU00		VccDSW3.3V	CPU_C10_GATE#	CH A Rise to CH B Rise	1 ms	100 ms	-108.451 ms	× Fail
2	tCPU01		CPU_C10_GATE#	RSMRST#	CH A Rise to CH B Rise	1 ms		108.338 ms	✓Pass
3	tCPU03		RSMRST#	DDR_VTT_CNTL	CH A Rise to CH B Rise		25 ms	112.444 µs	✓Pass
4	tCPU04		DDR_VTT_CNTL	DSW_PWROK	CH A Rise to CH B Rise	0 s	-1 ns	100.000 ns	×Fail
5	tCPU12		DSW_PWROK	IMVP VR_ON	CH A Rise to CH B Rise	1 ms		21.351 ms	✓Pass
6	tCPU16		IMVP VR_ON	PCH_PWROK	CH A Rise to CH B Rise	0 s		1.056 ms	✓Pass
7	tCPU22		PCH_PWROK	PLTRST_N	CH A Fall to CH B Fall	1 µs		148.567 µs	✓Pass
8	tCPU26		PLTRST_N	VccDSW3.3V	CH A Rise to CH B Rise		65 µs	33.900 µs	✓Pass
9	tCPU28b		VccDSW3.3V	RSMRST#	CH A Fall to CH B Fall	0 s		104.496 µs	✓Pass
10	tCPU30		CPU_C10_GATE#	DDR_VTT_CNTL	CH A Rise to CH B Rise	10 µs	65 µs	108.450 ms	× Fail
11	tPCH01		RSMRST#		CH A Rise to CH B Rise			112.544 µs	×Fail
12	tPCH02		DDR_VTT_CNTL	IMVP VR_ON	CH A Rise to CH B Rise	30 ms		21.351 ms	×Fail
13	tPCH03		DSW_PWROK	PCH_PWROK	CH A Rise to CH B Rise	1 µs		22.408 ms	✓Pass
14	tPCH04		IMVP VR_ON	PLTRST_N	CH A Rise to CH B Rise	9 ms		-21.384 ms	×Fail
15	tPCH05				CH A Rise to CH B Rise			-22.407 ms	×Fail
16	tPCH06		PLTRST_N	CPU_C10_GATE#	CH A Rise to CH B Rise	200 µs		-108.417 ms	×Fail

tCPU00 - Test Result: FAIL ×

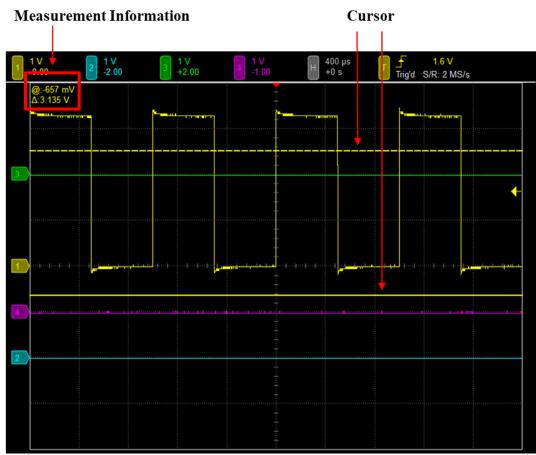
Description:

			Label			Туре					imit	Max	. Limi	t Value		Lat	el A Rule	Labe	I B Rule	Label A	Pass Cou	nt Labe	I B Pas	s Co
VccE	DSW3.	3V	CPU_0	C10_G	ATE#	CHA	Rise to	o CH E	B Rise	1 ms		100	ms	-108.4	51 ms									
1	1 V -3.00	2	I V 2.80					F	20 m +54.	ıs 194 ms	Т	∱ Stop	1.6 <u>S/R: 1</u>											
				1			-	-					16 - 10											
													1											
															4									
								÷++																
Ľ								1999 - 1999			in h in lini													
				1				1			-					1								

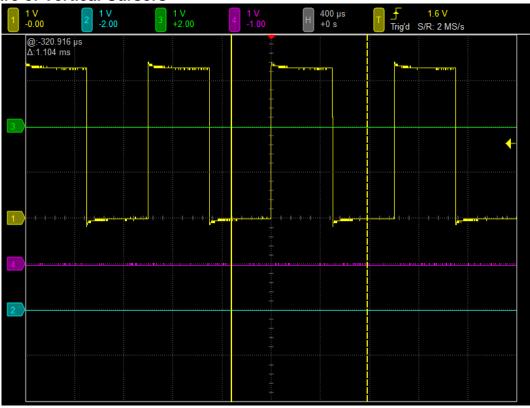
tCPU01 - Test Result: PASS 🗸

Desc	cription:									
	el Name /		Туре	Min. Limit	Max. Limit	Value	Label A Rule	Label B Rule	Label A Pass Count	Label B Pass Count
CPU	J_C10_G/	ATE# RSMRST#	CH A Rise to CH B Rise	1 ms		108.338 ms				
2	1 V -2.80 3	1 V -2.60	H 20 m +54.3	15 25 ms 📑	5 1.6 1 Stop S/R: 1					
		0			¹ 0		=			
2										

Cursor						
File / Settings	Display	Measurement & Analysis	Cursor	Acquire	Utility	
Туре	Horizontal In	fo. Vertical Info.				
None 🗸	Voltage/Curr	ent Time				


Measure the time, frequency or voltage between two cursors in the waveform area.

Туре	You can choose Vertical (time / frequency), Horizontal
	(voltage), Both to show vertical and horizontal cursors or
	None to hide the cursors.
Horizontal Info.	Show Voltage/Current information
Vertical Info.	Show Time or Frequency.


After the measurement cursor is activated, one solid line and one dashed line will be shown. The cursor's color will respond to the color of the current chosen channel. Drag with the mouse to make the dragged line solid and the other line dashed. Measurement information will be shown on the upper left corner.

Picture of Horizontal Cursors

Picture of Vertical Cursors

The cursor measurement information in the upper left corner is marked with "@" and " Δ " symbols.

When showing horizontal cursors, "@" denotes the voltage or current difference between the solid line and the central grid line, " Δ " denotes the voltage or current difference between the two cursors.

When showing vertical cursors, "@" denotes time difference or frequency between the selected cursor and the trigger position, and " Δ " denotes the time difference or frequency between two cursors.

Acquire

File / Settings	Display	Measurement & Analysis	Cursor	Acquire	Utility
Acquisition Mode	ADC Bit	s Roll Mode			
Sample	8 Bits	▼ Off			

Acquisition Mode

Sample	Displays waveform by sample points without post-
	processing.
Average	Consecutive sample points are averaged together, which
	effectively denoises the waveform locally.
Envelope	The minimum and maximum value sample points from
	multiple acquisitions are combined to form a waveform that
	shows min/max accumulation over time.
Peak Detect	Save the minimum and maximum value sample points
	taken during two waveform intervals and uses these
	samples as the two corresponding waveform points.
High Resolution	Multiple samples taken within one waveform interval are
	averaged together to produce one waveform point to have
	a decrease in noise and an improvement in resolution for
	low-speed signals.

ADC Bits

Choose 8 / 12 / 14 / 15 / 16 ADC bits for different vertical resolution. Available range of <u>Sampling Rate</u> and <u>Record Length</u> are changed under different vertical resolution.

Roll Mode

The waveforms are displayed continuously.

Utility

Calibration Tool

Signal Path Compensation	SPC process compensates the inaccuracy of DC
	caused by temperature regularly change or long-term
	drift. If the device is placed at places with large
	temperature difference or it hasn't been calibrated for
	months, it is recommended to conduct the SPC
	process before any measurements.
Restore to Factory Settings	Returns the settings to the original factory calibration

settings.

Logger

Logger allows you to log the waveform data into the hard disk on the PC.

AqVISA

AqVISA is an interface of the oscilloscope, which provides users access to each function and information.

Chapter 4 Control Panel

	RUN Single	Auto Default	Clear Force	Main Function
				Button
	Horizontal			
	Sample Rate	⊡¢11	MS/s 🚽	
	Time Div			Horizontal Axis
	Horz. Position	≣ ‡ +		Settings
	Rec. Length	10 K	• •	<u> </u>
	C			
	Trigger			
	Edg	e	-	
	Source	CH 1		
		≣ ‡1.		Trigger Settings
	Slope	Risin	-	
	Mode	Auto		
			ле	
	Measure	BW	2 BW	
	Digital	DC DC		
ottinge	Math	3 BW DC	4 ^{BW} _{DC}	
ettings	FFT	BW	BW	
	Decode	5 DC	6 DC	Channels Settings
	L	7 BW	8 BW DC	<u>Channels Settings</u>
		9 DC	10 DC	
	Display		12 ^{BW} _{DC}	
			BW	
<u>ettings</u>		13	14 DC	
	אויגאיא איזע איזע אויע איזע אויע איזע אויע איזע אויע איזע איזע איזע איזע איזע איזע איזע אי	15 ^{BW} _{DC}	16 ^{BW} DC	

Measure Settings

Display Division Settings

Main Function Button

RUN STOP	Run / Stop. Start or stop the acquire function immediately.
Single	Single. Stop acquiring waveforms once the trigger occurs.
Force	Force Trigger. When the trigger mode is normal or single,
	click the force trigger button to force it triggered successfully.
Clear	Clear. Clear the cache of captured waveforms, applicable to
	average mode.
Default	Default. Restores the default settings of all functions.
Auto	Autoset. Automatically adjust the voltage, time, and trigger
	parameters to test and measure signal and display the
	waveform more quickly. It will automatically find the input
	parameters of the channel. For example, if the CH1 switch is
	on, then the voltage, time, and trigger of CH1 signal will be the
	reference of parameters for Autoset.

Horizontal Axis Settings

Sample Rate Time Div Horz. Position Rec. Length	 □ \$\$\phi\$ 5 MS/s □ \$\$\phi\$ 200us □ \$\$\phi\$ +0ps 10 K 			
Sample Rate	Set up <u>Sampling Rate</u> .			
Time Div	The time interval per horizontal division.			
Horizontal Position	Horizontal Position The time interval between the horizontal center of the			
	screen and <u>Trigger Position</u> . You can either choose "To			
	Center" in the pull-down menu to jump back to your trigger			

position, or you can enter the time interval manually.

Record LengthRecord Length. Adjust the total amount of samplingpoints with a minimum of 1000 points.

Sampling Rate

	1Ch	2Ch	4Ch
8 bits	1 GS/s	500 MS/s	250 MS/s
12 bits	500 MS/s	250 MS/s	125 MS/s
14 bits	100 MS/s	100 MS/s	100 MS/s
15 bits	100 MS/s	100 MS/s	100 MS/s
16 bits	100 MS/s	100 MS/s	100 MS/s

Record Length

(Parentheses indicate that analog and digital are turned on at the same time.)

	1Ch	2Ch	3Ch	4Ch
8 bits	512 (256) Mpts	256 (128) Mpts	128 (64) Mpts	128 (64) Mpts
12 bits	256 Mpts	128 Mpts	64 Mpts	64 Mpts
14 bits	256 Mpts	128 Mpts	64 Mpts	64 Mpts
15 bits	256 Mpts	128 Mpts	64 Mpts	64 Mpts
16 bits	256 Mpts	128 Mpts	64 Mpts	64 Mpts

Trigger Settings Trigger Status

Trigger mode can be adjusted on the control panel and its current status can be found on top of the waveform window. The following are possible trigger status.

Arm	Currently filling Pre-Trigger memory.
Ready	Pre-Trigger memory is full and MSO is waiting for trigger.
Trig'd	Triggered signal received and filling Post-Trigger
	memory.
Auto	Timed out for waiting the trigger and it forced to update.
Stop	Stop acquiring.
Xferring	Transferring data.
Roll	Enter <u>Roll Mode</u> .

Edge

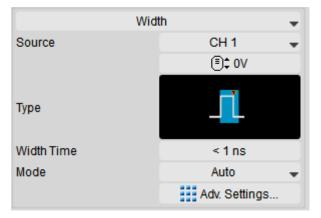
Triggers on Rising or Falling edges.

Edge		-
Source	CH 1	-
Slope	Rising	-
Mode	Auto	-
	Adv. Settings	

Source	Set up the signal source channel.
Slope	Set up either rising or falling edge as the trigger signal.
Mode	Please refer to <u>Mode</u> .
Adv. Settings	Please refer to Advanced Settings.

Video

Triggers on Scan Line, One Field, Odd field, and Even field. There are different scan lines for different video signals, 525 lines for NTSC and 625 lines for PAL and SECAM. If scan line is set to 0, it scans randomly.


Vid	eo 🗖	-
Source	CH 1	-
Trigger On	Scan Line 🚽	•
Scan Line	0 / 1125	
Mode	Auto	-
	Adv. Settings	

Source	Set up the signal source channel.	
Trigger On	Trigger on either Scan Line, One Field, Odd field, or Even	
	field.	
Scan Line	Set the amount of scan lines.	
Mode	Please refer to <u>Mode</u> .	
Adv. Settings	Please refer to Advanced Settings.	

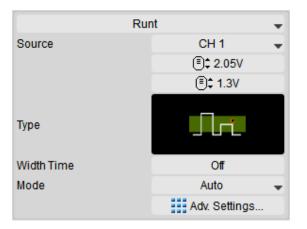
Width

Triggered when the pulse width matches the specific mode and time condition.

Source

Set up the signal source channel.

Туре


lcon	Description
	Positive Pulse
	Negative Pulse
=	Any Pulse
Width Time	Triggered when the duration time length of the complete
	pulse width meets the trigger condition. Width time range
	can be set from 1ns to 68s.
Mode	Please refer to <u>Mode</u> .
Adv. Settings	Please refer to Advanced Settings.

Runt

Using two thresholds, the trigger occurs when the pulse passes the first voltage level

but not the second voltage level.

Source

Set trigger channel.

Туре

lcon	Width Time	Description
	-	Positive runt pulse
ئىل	-	Negative runt pulse
	-	Positive or negative runt pulse
	1 ns – 68 s	Positive runt pulse with certain width
	1 ns – 68 s	Negative runt pulse with certain width
╶ ┨╤ <mark>┎╧</mark> ═	1 ns – 68 s	Positive or negative runt pulse with certain width

Width TimeTrigger occurs when the width of runt pulse exceeds the
configured width time. Available width time range is shown
as the chart above.

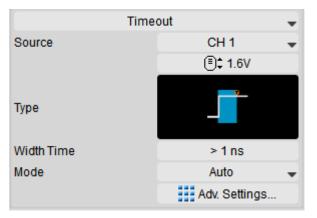
ModePlease refer to Mode.

Adv. Settings Please refer to Advanced Settings.

Pattern / State

Pattern / state mode is for verifying logic combination of input signals in logic circuit. Triggered when the logic operation outputs a true statement.

Pattern / State 🗸		
1 - 1 -	1 - 1 -	
CH1 Threshold	(≣ ‡ 1.6 V	
CH2 Threshold	(≣ ‡ 1.6 V	
CH3 Threshold		
CH4 Threshold	(■ ‡ 1.6 V	
When Pattern	Entered 🚽	
Mode	Auto 👻	
	Adv. Settings	


ThresholdSet the threshold voltage of each channel.

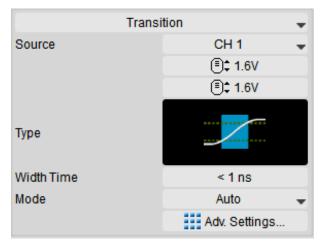
When Pattern	Set as Entered, Exited, or Present to measure the time
	of entering, exiting, or presenting. You can also choose to
	set OR as logic operation. Triggered when the result of
	logic operation changes from 0 to 1.
	In state trigger, it's triggered when state channel meets the
	criteria and the output from logic channel is true.
Mode	Please refer to <u>Mode</u> .
Adv. Settings	Please refer to Advanced Settings.

Timeout

Often used when the system is stopped for unidentified reasons.

Source

Set trigger signal source channel.


Туре

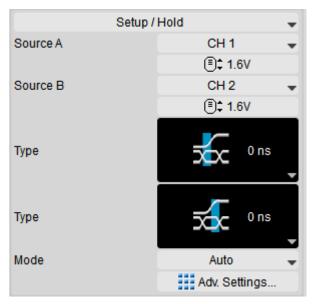
Icon	Description
	High
	Low
	Either
Width Time	Triggered when no changes are made in a specific time
	period. Width time range can be set from 1 ns to 68 s.
Mode	Please refer to <u>Mode</u> .
Adv. Settings	Please refer to Advanced Settings.

Transition

Triggers when the state transition takes more/less time than the width time.

Source

Set up signal source channel.


Туре

Icon	Description	
	Rising	
	Falling	
Width Time	Set up the width time for state transition. Width time range	
	can be set from 1 ns to 68 s.	
Mode	Please refer to <u>Mode</u> .	
Adv. Settings	Please refer to Advanced Settings.	

Setup / Hold

Locates the specific signal quality and the details of time sequence in sync signals.

Source (A/B) Set up signal source channel.

TypeRegard the signal from channel A as clock signal and the
signal from channel B as data signal. Triggered when the
status is changed during the setup time or hold time. Width
time range can be set from 0ns to 68s.

lcon	Description
⊼ c	Setup timing violation when clock rising.
×	Setup timing violation when clock falling.
	Setup timing violation when clock change.

Icon	Description
×	Hold timing violation when clock rising.

₩	Hold timing violation when clock falling.	
X	Hold timing violation when clock change.	
Setup Time	The time when the data remains stable before clock	
	edge.	
Hold Time	The time when the data remains stable after clock edge.	
Mode	Please refer to <u>Mode</u> .	
Adv. Settings	Please refer to Advanced Settings.	

B- Trigger

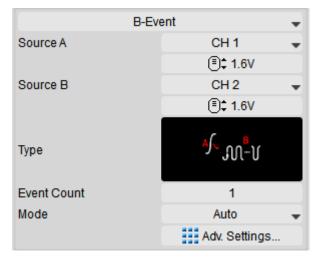
In the most demanding application, a single trigger event is not sufficient to fully define

the trigger condition. Thus, B-Trigger is able to set up two trigger condition.

B-Trigger 🗸	
Source A	CH 1 🚽
	Ē¢ 1.6V
Source B	CH 2 🗸
	Ē¢ 1.6V
Туре	AB
B after A	1 ns
Mode	Auto 🚽
	Adv. Settings

Source (A/B) Set up signal source channel.

TypeYou are able to acquire more complicated signals by
combining the A-Event and B-Event. Triggered when B-
Event happens in condition of occurence of A-Event within
the specific time.


lcon	Description	
A B	B rising after A rising	
A	B falling after A rising	
A B	B rising after A falling	
▲ <u>·</u>	B falling after A falling	
B After A	Triggered when B happens after A with a delay time.	
	Available time range can be set from 1 ns to 68 s.	
Mode	Please refer to <u>Mode</u> .	
Adv. Settings	Please refer to Advanced Settings.	

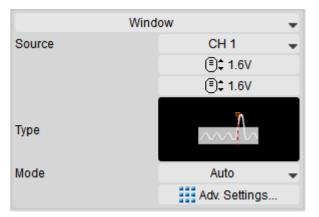
B-Event

In the most demanding application, a single trigger event is not sufficient to fully define

the trigger condition. Thus, B-Event is able to set up multiple condition.

Source (A/B) Set up signal source channel.

TypeCombines the triggers from A-Event and B-Event to
acquire more complicated signals. Triggered when B-
Event happens n times after A-Event happens. The count
of occurence for B-Event ranges from 1 to 1024.


Icon	Description
∿ [_] ∭ ∿	B rising n-times after A rising
᠕᠁ᢆᢧ	B falling n-times after A rising
س <mark>∎</mark> س عرام	B rising n-times after A falling
ᡗ᠁ᢆᡀ	B falling n-times after A falling
Mode	Please refer to <u>Mode</u> .
Adv. Settings	Please refer to Advanced Settings.

Window

A window is composed of two trigger voltage level. Triggered when a waveform enters

or exits the window.

Source

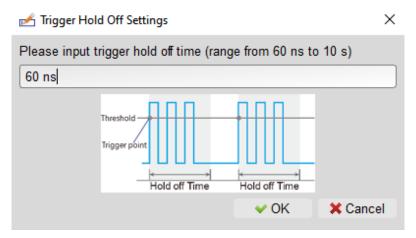
Set trigger channel.

Туре

Icon	Description
	Exit window
	Enter window
Mode	Please refer to <u>Mode</u> .
Adv. Settings	Please refer to Advanced Settings.

Bus Trigger (DSO / LA)

Please refer to LA Decode & Trigger manual.


Mode

Auto	Keeps acquiring waveforms even not triggered.
Normal	Only acquires waveforms when triggered.
Single	Stop acquiring waveforms when triggered once.

Advanced Settings

Trigger Hold Off Settings

The trigger function is turned off once it successfully triggered and turned back on after the specified hold off time. Hold off time ranges from 60ns to 10s.

Trigger Coupling

By utilizing high frequency rejection (~50KHz), low frequency rejection (~50KHz), and **noise rejection**, the disturbance caused by high frequency, low frequency or noise can be excluded. Among these three, high frequency rejection and noise rejection are for handling noise signals. For high frequency rejection, the 50KHz lowpass filter is added to trigger circuit to exclude unwanted signals. As for noise rejection, the hysteresis feature is added to trigger circuit to filter noise signals.

Measure Settings

Digital Channel Settings

hreshold Level				□ 1.60 V 📘
D8 - D15				□ 1.60 V 📘
Enable Schmitt Circu	uit			
Signal	Color	Туре		
D0		HEX		×
D1		HEX	-	×
D2		HEX		×
D3		HEX		×
D4		HEX		×
D5		HEX		×
D6		HEX		×
D7		HEX	*	×

After digital channels are enabled, you can define which channels to be measured. 8 channels are considered as a group. There are 2 groups in total, where their trigger levels can be adjusted within the group.

Math

Refer to Math.

FFT

Refer to FFT.

Decode

Refer to LA Decode & Trigger manual. The results will be displayed on the Report

Window.

Channel Settings

Channel Switch Button

Channel Setting Dialog

CH 1	ON / OFF
Coupling	DC 🚽
Bandwidth	Full BW 🚽
Probe	10x 🚽
VOLT DIV	POSITION
€‡1V ↓	

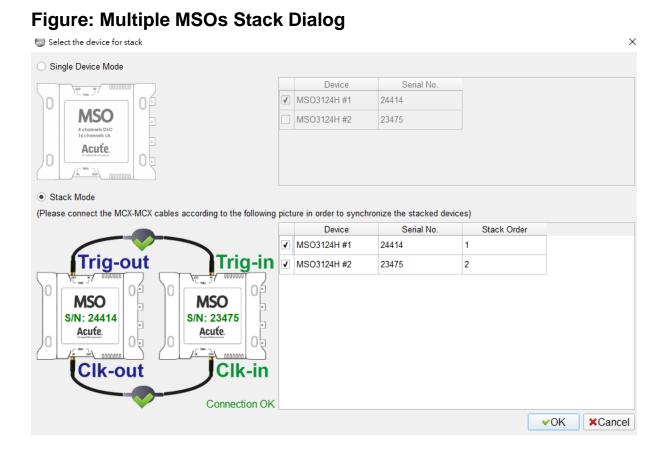
If the background color is gray, it means that this channel is unavailable. When a single device is being used, CH1-CH4 are available. When multiple MSOs are stacked and being used, CH5-CH16 will be available.

Label	Editable channel label.
ON/OFF	Turn on/off the channels. You can also click right-click on
	the the channel switch to turn on/off the channels.
Coupling	Input signal DC/AC coupling. DC coupling does nothing to
	the signal, whereas AC coupling filters out the DC voltage
	level.
Bandwidth	Set up bandwidth limitation.
Probe	The probe option settings. Please be aware that the
	settings on the software must be identical with the probe.
Volt Div	Set voltage for each vertical division. You can also place
	your mouse on channel switch button and adjust voltage
	with the mouse wheel without tapping channel settings.
Position	Set the position of the channel. You can also change the
	position by dragging the labels on the left of the waveform
	window.

Display Division Settings

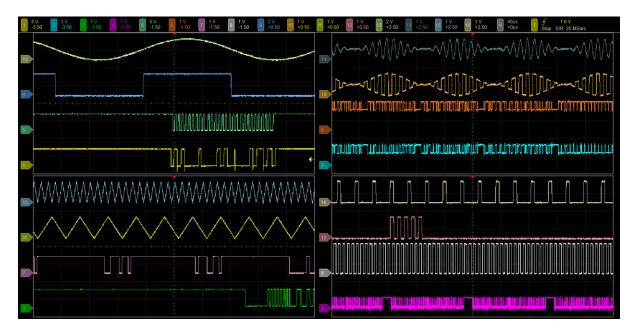
Icon	Description
มานนามท เป*าเป*น	Single Display
·u)**	Horizontal Division
<mark>kith_kith</mark>	Vertical Division
<mark>มาน</mark> เน!"	2x2 Multi Displays

The display divisions do not affect the vertical resolutions.



Chapter 5 How to Stack Multiple Devices

How to Stack Multiple Devices


You can stack multiple devices as a multi channels oscilloscope. Take stacking two devices as an example, connect the "TRIG-OUT" of first MSO to the "TRIG-IN" of the second MSO with MCX cable and connect the "REF-OUT (CLK-OUT)" of the first device to the "REF-IN (CLK-IN)" of the second device with another MCX cable. Repeat the steps for stacking more devices if needed.

The dialog above is shown after the software is opened. The list in the dialog shows the connected oscilloscopes, serial numbers, and the default stack order. Also, it automatically checks whether all devices are correctly stacked. If you want to change the stack order, please uncheck all the boxed of all devices in the list, and then check it with the desired order.

Multiple Stacked Devices Software View

	Description
Mode	If any device uses more than 3 channels, the maximum sampling rate is 250MHz.
Trigger Source	CH1, CH2, CH3, CH4 or Ext-Trig. Trigger function only available with the first (master) device.
Phase Difference	± (1 / Current sampling rate) between master and slave device.
Limitations of Different Models	Please refer to the shortest record length.

DSO Software Manual

Copyright[©]2023 Acute Technology Inc. All Rights Reserved.

Address: 6F-7 #12, Ln. 609, ChongXin Rd. Sec. 5, SanChong Dist., New Taipei

City 24159, Taiwan

Tel:+886-2-2999-3275

Fax : +886-2-2999-3276

E-mail: service@acute.com.tw